Question #322243

Graph the following function:

y= ex / x2

Ensure that you include the following properties:

  • Asymptote, x, y – intercepts, Domain and Range
  • First derivative, Maximum and Minimum
  • Second derivative, inflection points
  • Regions or increasing and decreasing
  • Regions or concave up and concave down
  • Sketch of the graph
1
Expert's answer
2022-04-05T14:14:29-0400

Assimptotes x=0, y=0

It is no x,y- interceptes.

Domain:(,0)(0,),xx0Domain: ( − ∞ , 0 ) ∪ ( 0 , ∞ ) , { x | x ≠ 0 }

Range:(0,),yy>0Range: ( 0 , ∞ ) , { y | y > 0 }

y=ex(x2)x3y'=\frac{e^x(x-2)}{x^3}

ex(x2)x3=0\frac{e^x(x-2)}{x^3}=0 , x=2, y=e2/4y=e^2/4


y"=4xexx2ex6e6x4y"=-\frac{4xe^x-x^2e^x-6e^6}{x^4}

At x=2 y">0, so

(2,e2/4) -local minimum

No inflection points, because y"0y" \not=0

Increasing on:(,0),(2,)Increasing\ on: ( − ∞ , 0 ) , ( 2 , ∞ )

Decreasing on:(0,2)Decreasing\ on: ( 0 , 2 )

Concave up on(,0)sincef(x)is positiveConcave\ up\ on ( − ∞ , 0 ) since f '' ( x ) is\ positive

Concave up on(0,)sincef(x)is positiveConcave\ up\ on ( 0 , ∞ ) since f '' ( x ) is\ positive








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS