Wehave:t−6t3⩽sint⩽t,t⩾0fromwhich1−6t2⩽tsint⩽1Next,x21−cosx=x22sin22x=21(∣2x∣sin∣2x∣)221(∣2x∣sin∣2x∣)2⩽2121(∣2x∣sin∣2x∣)2⩾21(1−6∣2x∣2)2=21(1−24x2)2Sincex→0lim21=21,x→0lim21(1−24x2)2=21,bythesqueezetheoremx→0limx21−cosx=21
Comments
Leave a comment