"We\\,\\,have:\\\\t-\\frac{t^3}{6}\\leqslant \\sin t\\leqslant t,t\\geqslant 0\\\\from\\,\\,which\\\\1-\\frac{t^2}{6}\\leqslant \\frac{\\sin t}{t}\\leqslant 1\\\\Next,\\\\\\frac{1-\\cos x}{x^2}=\\frac{2\\sin ^2\\frac{x}{2}}{x^2}=\\frac{1}{2}\\left( \\frac{\\sin \\left| \\frac{x}{2} \\right|}{\\left| \\frac{x}{2} \\right|} \\right) ^2\\\\\\frac{1}{2}\\left( \\frac{\\sin \\left| \\frac{x}{2} \\right|}{\\left| \\frac{x}{2} \\right|} \\right) ^2\\leqslant \\frac{1}{2}\\\\\\frac{1}{2}\\left( \\frac{\\sin \\left| \\frac{x}{2} \\right|}{\\left| \\frac{x}{2} \\right|} \\right) ^2\\geqslant \\frac{1}{2}\\left( 1-\\frac{\\left| \\frac{x}{2} \\right|^2}{6} \\right) ^2=\\frac{1}{2}\\left( 1-\\frac{x^2}{24} \\right) ^2\\\\Since\\\\\\underset{x\\rightarrow 0}{\\lim}\\frac{1}{2}=\\frac{1}{2},\\underset{x\\rightarrow 0}{\\lim}\\frac{1}{2}\\left( 1-\\frac{x^2}{24} \\right) ^2=\\frac{1}{2},\\\\by\\,\\,the\\,\\,squeeze\\,\\,theorem\\\\\\underset{x\\rightarrow 0}{\\lim}\\frac{1-\\cos x}{x^2}=\\frac{1}{2}\\\\"
Comments
Leave a comment