A firm's average revenue function
𝐴𝑅=−18−7,5𝑄+𝑄
2
.
AR=−18−7,5Q+Q2.
Determine the number of units to be produced and sold to maximise revenue.
a.−1
b.6
c.3,75
d.0
"AR=\\frac{R}{Q}\\Rightarrow R=AR\\cdot Q=\\left( -18-7.5Q+Q^2 \\right) Q=\\\\=Q^3-7.5Q^2-18Q\\\\Q^3-7.5Q^2-18Q\\rightarrow \\max \\\\3Q^2-15Q-18=0\\Rightarrow Q\\in \\left\\{ -1,6 \\right\\}"
Since Q is non-negative, we have only Q=6.
But this value is minimum, not maximum:
"R''\\left( 6 \\right) =\\left( 6Q-15 \\right) |_{Q=6}=36-15=21>0"
Actually the value of R tends to infinity at infinite Q.
So the problem is incorrect
Comments
Leave a comment