Represent the sum of first terms of the series 3+33+333+.........
using the sigma notation.
Let the nth term be,
"tn=1+10+100+...10^{n-1}"
This is a G.P. with first term 1 and common ratio of 10.
Thus, the sum of n terms,
"S= 3\\sum_{i=1}^{n} t_{n}=3\\sum_{i=1}^{n}\\frac{10^n-1}{9}"
Hence,
"S= 3\\sum\\frac{10^n}{9}-3\\sum\\frac{1}{9}"
"S= 3[\\frac{10(1-10^n)}{(1-10)\\times9}-(\\frac{1}{9})\\times n"
"= 3[10\\times\\frac{10^n-1}{81}-\\frac{n}{9}]"
Solving this we get,
"S= [10\\times \\frac{10^n-1}{27}-\\frac{n}{3}]"
Hence, the sum of first n terms of the series is,
Comments
Leave a comment