"\\begin{gathered}\n\\int \\frac{x-x^{2}}{2 x^{4}} \\mathrm{~d} x \\\\\n=\\int\\left(\\frac{1}{2 x^{3}}-\\frac{1}{2 x^{2}}\\right) \\mathrm{d} x \\\\\n=\\frac{1}{2} \\int \\frac{1}{x^{3}} \\mathrm{~d} x-\\frac{1}{2} \\int \\frac{1}{x^{2}} \\mathrm{~d} x\n\\end{gathered}\n\\\\[4mm]\n\\text { Now solving: }\\\\[2mm]\n\\int \\frac{1}{x^{3}} d x\\\\[2mm]\n\n\\text{Apply power rule:}\\\\[2mm]\n\\begin{aligned}\n\\int x^{\\mathrm{n}} \\mathrm{d} x=& \\frac{x^{\\mathrm{n}+1}}{\\mathrm{n}+1} \\text { with } \\mathrm{n}=-3: \\\\\n&=-\\frac{1}{2 x^{2}}\n\\end{aligned}\n\\\\[2mm]\n\\text{ Now solving:}\\\\[2mm]\n\\int \\frac{1}{x^{2}} \\mathrm{~d} x\\\\[2mm]\n\\text{ Apply power rule with } n =-2 :\\\\[2mm]\n=-\\frac{1}{x}\\\\[3mm]\n\\text{ Plug in solved integrals:}\\\\[3mm]\n\\begin{gathered}\n\\frac{1}{2} \\int \\frac{1}{x^{3}} \\mathrm{~d} x-\\frac{1}{2} \\int \\frac{1}{x^{2}} \\mathrm{~d} x \\\\\n=\\frac{1}{2 x}-\\frac{1}{4 x^{2}}\n\\end{gathered}\n\\\\[2mm]\n\\text{ The problem is solved:}\\\\[2mm]\n\\begin{aligned}\n& \\int \\frac{x-x^{2}}{2 x^{4}} \\mathrm{~d} x \\\\\n=& \\frac{1}{2 x}-\\frac{1}{4 x^{2}}+C\n\\end{aligned}\n\\\\[3mm]\n\\text{ Simplifying the above, we have:}\\\\[2mm]\ny=\\frac{2 x-1}{4 x^{2}}+C" At y=2 when x=1, we have:
"2=\\frac{2 (1)-1}{4 (1)^{2}}+C\\\\[1.5mm]\n2 = \\frac{2 -1}{4 }+C\\\\[1.5mm]\n2 = \\frac{1}{4 }+C\\\\[1.5mm]\n2 -\\frac{1}{4 } = C\\\\[2mm]\n\\implies C = 1.75\\\\[4mm] \n\\therefore y=\\frac{2x-1}{4x^{2}}+1.75"
Comments
Leave a comment