Question #314459

Determine whether the following functions are continuous at a given point. Show your complete solution.

1. Ζ’(π‘₯)=3π‘₯2βˆ’4π‘₯+2atπ‘₯=2

2. Ζ’(π‘₯)=π‘₯2βˆ’6π‘₯βˆ’3atπ‘₯=4


1
Expert's answer
2022-03-21T02:02:32-0400

For a function f to be continuous, at a given point, then:

  • The function must be defined at a point a to be continuous at that point x = a.
  • The limit of the function f(x) should exist at the point x = a,
  • The value of the function f(x) at that point, i.e. f(a) must equal the value of the limit of f(x) at x = a.


1. Ζ’(π‘₯)=3π‘₯2βˆ’4π‘₯+2 at π‘₯=2Ζ’(π‘₯)=3π‘₯^2βˆ’4π‘₯+2 \text{ at }π‘₯=2


(i) Substituting x=2 in f(x):

f(2)=3(2)2βˆ’4(2)+2=3(4)βˆ’4(2)+2=6f(2) = 3(2)^2 -4(2)+2 =3(4)-4(2)+2 = 6


(ii) Limit at x=2


lim⁑xβ†’2Ζ’(π‘₯)=lim⁑xβ†’2(3π‘₯2βˆ’4π‘₯+2)=3(2)2βˆ’4(2)+2=3(4)βˆ’4(2)+2=6=f(2)\begin{aligned} \lim_{x \rightarrow2} Ζ’(π‘₯) &= \lim_{x \rightarrow2} (3π‘₯^2βˆ’4π‘₯+2)\\ & = 3(2)^2 -4(2)+2\\ &=3(4)-4(2)+2\\ &= 6\\ &=f(2) \end{aligned}

βˆ΄Ζ’(π‘₯)=3π‘₯2βˆ’4π‘₯+2 is continuous at π‘₯=2\therefore Ζ’(π‘₯)=3π‘₯^2βˆ’4π‘₯+2 \text{ is continuous at } π‘₯=2



2. Ζ’(π‘₯)=π‘₯2βˆ’6π‘₯βˆ’3 at π‘₯=4Ζ’(π‘₯)=π‘₯^2βˆ’6π‘₯βˆ’3 \text{ at } π‘₯=4


(i) substituting x=4 in f(x)

Ζ’(4)=(4)2βˆ’6(4)βˆ’3=16βˆ’24βˆ’3=βˆ’11Ζ’(4)=(4)^2βˆ’6(4)βˆ’3 = 16-24-3 = -11


(ii) Limit at x =4


lim⁑xβ†’4f(x)=lim⁑xβ†’4(π‘₯2βˆ’6π‘₯βˆ’3)=(4)2βˆ’6(4)βˆ’3=16βˆ’24βˆ’3=βˆ’11=f(4)\begin{aligned} \lim_{x \rightarrow 4} f(x) &= \lim_{x \rightarrow 4} (π‘₯^2βˆ’6π‘₯βˆ’3)\\ &= (4)^2βˆ’6(4)βˆ’3\\ & = 16-24-3\\ & = -11\\ & = f(4) \end{aligned}

βˆ΄Ζ’(π‘₯)=π‘₯2βˆ’6π‘₯βˆ’3 is continuous at π‘₯=4\therefore Ζ’(π‘₯)=π‘₯^2βˆ’6π‘₯βˆ’3 \text{ is continuous at } π‘₯=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS