T(x,y)=x2+xy+y2−6x+2{Tx′=0Ty′=0⇒{2x+y−6=0x+2y=0⇒{x=4y=−2T(4,−2)=42+4⋅(−2)+(−2)2−6⋅4+2=−10T(x,−3)=x2−3x+9−6x+2=x2−9x+11T(0,−3)=11,T(5,−3)=−9,T(4.5,−3)=−9.25T(x,3)=x2+3x+9−6x+2=x2−3x+11T(0,3)=11,T(5,3)=21,T(1.5,3)=8.75T(0,y)=y2+2T(0,−3)=11,T(0,3)=11,T(0,0)=2T(5,y)=25+5y+y2−30+2=y2+5y−3T(5,−3)=−9,T(5,3)=21,T(5,−2.5)=−9.25
Thus
minT=−10,maxT=21
Comments