Find the absolute maxima and minima of the function on the given domain
T(x, y) = x
2 + xy + y
2 − 6x + 2 on the rectangular plane 0 ≤ x ≤ 5, −3 ≤ y ≤ 3.
"T\\left( x,y \\right) =x^2+xy+y^2-6x+2\\\\\\left\\{ \\begin{array}{c} T'_x=0\\\\ T'_y=0\\\\\\end{array} \\right. \\Rightarrow \\left\\{ \\begin{array}{c} 2x+y-6=0\\\\ x+2y=0\\\\\\end{array} \\right. \\Rightarrow \\left\\{ \\begin{array}{c} x=4\\\\ y=-2\\\\\\end{array} \\right. \\\\T\\left( 4,-2 \\right) =4^2+4\\cdot \\left( -2 \\right) +\\left( -2 \\right) ^2-6\\cdot 4+2=-10\\\\T\\left( x,-3 \\right) =x^2-3x+9-6x+2=x^2-9x+11\\\\T\\left( 0,-3 \\right) =11,T\\left( 5,-3 \\right) =-9,T\\left( 4.5,-3 \\right) =-9.25\\\\T\\left( x,3 \\right) =x^2+3x+9-6x+2=x^2-3x+11\\\\T\\left( 0,3 \\right) =11,T\\left( 5,3 \\right) =21,T\\left( 1.5,3 \\right) =8.75\\\\T\\left( 0,y \\right) =y^2+2\\\\T\\left( 0,-3 \\right) =11,T\\left( 0,3 \\right) =11,T\\left( 0,0 \\right) =2\\\\T\\left( 5,y \\right) =25+5y+y^2-30+2=y^2+5y-3\\\\T\\left( 5,-3 \\right) =-9,T\\left( 5,3 \\right) =21,T\\left( 5,-2.5 \\right) =-9.25"
Thus
"\\min T=-10,\\max T=21"
Comments
Leave a comment