Question #308238

find fourier integral for the following f(x)= e-x x>0


1
Expert's answer
2022-03-09T14:54:39-0500

Solution


Given that


f(x)=exf(x)=e^{-x} here x>0x>0


The Fourier expansion is defined as


f\left( x \right) = \sum\limits_0^\infty {\left( {A\left( \alpha \right)\cos \left( {\alpha x} \right) + B\left( \alpha \right)\sin \left( {\alpha x} \right)} \right)} \


Here,


A\left( \alpha \right) = \frac{1}{\pi }\int\limits_{ - \infty }^\infty {f\left( u \right)\,\cos \left( {\alpha u} \right)\,du} \

and

B\left( \alpha \right) = \frac{1}{\pi }\int\limits_{ - \infty }^\infty {f\left( u \right)\,\sin \left( {\alpha u} \right)\,du} \


Now, Integrating by parts, we get 


A\left( \alpha \right) = \frac{1}{{{\alpha ^2} + 1}}\ and B\left( \alpha \right) = \frac{\alpha}{{{\alpha ^2} + 1}}\


Hence


\begin{array}{l} f\left( x \right) = {e^{ - x}} = \sum\limits_0^\infty {\left( {A\left( \alpha \right)\cos \left( {\alpha x} \right) + B\left( \alpha \right)\sin \left( {\alpha x} \right)} \right)} \\ {e^{ - x}} = \sum\limits_0^\infty {\left( {\frac{1}{{{\alpha ^2} + 1}}\cos \left( {\alpha x} \right) + \frac{\alpha }{{{\alpha ^2} + 1}}\sin \left( {\alpha x} \right)} \right)} \\ {e^{ - x}} = \frac{1}{{{\alpha ^2} + 1}}\sum\limits_0^\infty {\left( {\cos \left( {\alpha x} \right) + \alpha \sin \left( {\alpha x} \right)} \right)} \end{array}\



Hence, the Fourier expansion of f(x)=exf(x)=e^{-x} is

{e^{ - x}} = \frac{1}{{{\alpha ^2} + 1}}\sum\limits_0^\infty {\left( {\cos \left( {\alpha x} \right) + \alpha \sin \left( {\alpha x} \right)} \right)} \




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS