find fourier integral for the following f(x)= e-x x>0
Solution
Given that
"f(x)=e^{-x}" here "x>0"
The Fourier expansion is defined as
"f\\left( x \\right) = \\sum\\limits_0^\\infty {\\left( {A\\left( \\alpha \\right)\\cos \\left( {\\alpha x} \\right) + B\\left( \\alpha \\right)\\sin \\left( {\\alpha x} \\right)} \\right)} \\"
Here,
"A\\left( \\alpha \\right) = \\frac{1}{\\pi }\\int\\limits_{ - \\infty }^\\infty {f\\left( u \\right)\\,\\cos \\left( {\\alpha u} \\right)\\,du} \\"
and
"B\\left( \\alpha \\right) = \\frac{1}{\\pi }\\int\\limits_{ - \\infty }^\\infty {f\\left( u \\right)\\,\\sin \\left( {\\alpha u} \\right)\\,du} \\"
Now, Integrating by parts, we getΒ
"A\\left( \\alpha \\right) = \\frac{1}{{{\\alpha ^2} + 1}}\\" and "B\\left( \\alpha \\right) = \\frac{\\alpha}{{{\\alpha ^2} + 1}}\\"
Hence
"\\begin{array}{l}\nf\\left( x \\right) = {e^{ - x}} = \\sum\\limits_0^\\infty {\\left( {A\\left( \\alpha \\right)\\cos \\left( {\\alpha x} \\right) + B\\left( \\alpha \\right)\\sin \\left( {\\alpha x} \\right)} \\right)} \\\\\n{e^{ - x}} = \\sum\\limits_0^\\infty {\\left( {\\frac{1}{{{\\alpha ^2} + 1}}\\cos \\left( {\\alpha x} \\right) + \\frac{\\alpha }{{{\\alpha ^2} + 1}}\\sin \\left( {\\alpha x} \\right)} \\right)} \\\\\n{e^{ - x}} = \\frac{1}{{{\\alpha ^2} + 1}}\\sum\\limits_0^\\infty {\\left( {\\cos \\left( {\\alpha x} \\right) + \\alpha \\sin \\left( {\\alpha x} \\right)} \\right)} \n\\end{array}\\"
Hence, the Fourier expansion of "f(x)=e^{-x}" is
"{e^{ - x}} = \\frac{1}{{{\\alpha ^2} + 1}}\\sum\\limits_0^\\infty {\\left( {\\cos \\left( {\\alpha x} \\right) + \\alpha \\sin \\left( {\\alpha x} \\right)} \\right)} \\"
Comments
Leave a comment