find fourier integral for the following f(x)= e-x x>0
Solution
Given that
here
The Fourier expansion is defined as
f\left( x \right) = \sum\limits_0^\infty {\left( {A\left( \alpha \right)\cos \left( {\alpha x} \right) + B\left( \alpha \right)\sin \left( {\alpha x} \right)} \right)} \
Here,
A\left( \alpha \right) = \frac{1}{\pi }\int\limits_{ - \infty }^\infty {f\left( u \right)\,\cos \left( {\alpha u} \right)\,du} \
and
B\left( \alpha \right) = \frac{1}{\pi }\int\limits_{ - \infty }^\infty {f\left( u \right)\,\sin \left( {\alpha u} \right)\,du} \
Now, Integrating by parts, we get
A\left( \alpha \right) = \frac{1}{{{\alpha ^2} + 1}}\ and B\left( \alpha \right) = \frac{\alpha}{{{\alpha ^2} + 1}}\
Hence
\begin{array}{l} f\left( x \right) = {e^{ - x}} = \sum\limits_0^\infty {\left( {A\left( \alpha \right)\cos \left( {\alpha x} \right) + B\left( \alpha \right)\sin \left( {\alpha x} \right)} \right)} \\ {e^{ - x}} = \sum\limits_0^\infty {\left( {\frac{1}{{{\alpha ^2} + 1}}\cos \left( {\alpha x} \right) + \frac{\alpha }{{{\alpha ^2} + 1}}\sin \left( {\alpha x} \right)} \right)} \\ {e^{ - x}} = \frac{1}{{{\alpha ^2} + 1}}\sum\limits_0^\infty {\left( {\cos \left( {\alpha x} \right) + \alpha \sin \left( {\alpha x} \right)} \right)} \end{array}\
Hence, the Fourier expansion of is
{e^{ - x}} = \frac{1}{{{\alpha ^2} + 1}}\sum\limits_0^\infty {\left( {\cos \left( {\alpha x} \right) + \alpha \sin \left( {\alpha x} \right)} \right)} \
Comments