1.if f(x)=x^2-1/1+x^2,find f(-1),f(2),f(1/2),f(tan x).
2.graph the surface area of a cube as a function of the volume of a cube.
1) f(x)=x2−11+x2f(x)=\frac{x^2-1}{1+x^2}f(x)=1+x2x2−1
f(−1)=1−11+1=0f(-1)=\frac{1-1}{1+1}=0f(−1)=1+11−1=0
f(2)=4−11+4=34f(2)=\frac{4-1}{1+4}=\frac{3}{4}f(2)=1+44−1=43
f(12)=14−11+14=−35f(\frac{1}{2})=\frac{\frac{1}{4}-1}{1+\frac{1}{4}}=-\frac{3}{5}f(21)=1+4141−1=−53
f(tanx)=tan2x−1tan2x+1=sin2x−cos2x=1−2cos2xf(\tan x)=\frac{\tan^2 x-1}{\tan^2x+1}=\sin^2x-\cos^2x=1-2\cos^2xf(tanx)=tan2x+1tan2x−1=sin2x−cos2x=1−2cos2x
2) V=a3→a=V13V=a^3\to a=V^\frac{1}{3}V=a3→a=V31
S=6a2=6V23S=6a^2=6V^\frac{2}{3}S=6a2=6V32
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment