Answer to Question #301415 in Calculus for Jimjim

Question #301415

1.if f(x)=x^2-1/1+x^2,find f(-1),f(2),f(1/2),f(tan x).




2.graph the surface area of a cube as a function of the volume of a cube.

1
Expert's answer
2022-02-24T13:10:43-0500

1) f(x)=x211+x2f(x)=\frac{x^2-1}{1+x^2}

f(1)=111+1=0f(-1)=\frac{1-1}{1+1}=0

f(2)=411+4=34f(2)=\frac{4-1}{1+4}=\frac{3}{4}

f(12)=1411+14=35f(\frac{1}{2})=\frac{\frac{1}{4}-1}{1+\frac{1}{4}}=-\frac{3}{5}

f(tanx)=tan2x1tan2x+1=sin2xcos2x=12cos2xf(\tan x)=\frac{\tan^2 x-1}{\tan^2x+1}=\sin^2x-\cos^2x=1-2\cos^2x


2) V=a3a=V13V=a^3\to a=V^\frac{1}{3}

S=6a2=6V23S=6a^2=6V^\frac{2}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment