Question #301372

The equation for a distance, s(m), travelled in time t(s) by an object starting with an initial velocity u(ms-1) and uniform acceleration a(ms-2) is: 𝑠=𝑢𝑡+12𝑎𝑡2 The tasks are to: a) Plot a graph of distance (s) vs time (t) for the first 10s of motion if 𝑢=10𝑚𝑠−1 and 𝑎=4𝑚𝑠−2. b) Determine the gradient of the graph at 𝑡=2𝑠 and 𝑡=6𝑠. c) Differentiate the equation to find the functions for i) Velocity (𝑣=𝑑𝑠𝑑𝑡) ii) Acceleration (𝑎=𝑑𝑣𝑑𝑡=𝑑2𝑠𝑑𝑡2) d) Use your result from part c to calculate the velocity at 𝑡=2𝑠 and 𝑡=6𝑠. e) Compare your results for part b and part d.


1
Expert's answer
2022-02-23T12:35:23-0500
s(t)=10t+4t22,ms(t)=10t+\dfrac{4t^2}{2}, m

a)


s(t)=10t+2t2,0t10s(t)=10t+2t^2, 0\le t\le10


b)


grad s=s2s1t2t1grad \ s=\dfrac{s_2-s_1}{t_2-t_1}

t=2,s(2)=28t=2 , s(2)=28



grad st=2=10(2+Δt)+2(2+Δt)228Δtgrad \ s|_{t=2}=\dfrac{10(2+\Delta t)+2(2+\Delta t)^2-28}{\Delta t}


=18+2Δt18(m/s)=18+2\Delta t\to 18( m/s)

t=6,s(6)=132t=6 , s(6)=132



grad st=6=10(6+Δt)+2(6+Δt)2132Δtgrad \ s|_{t=6}=\dfrac{10(6+\Delta t)+2(6+\Delta t)^2-132}{\Delta t}


=34+2Δt34(m/s)=34+2\Delta t\to 34( m/s)

c)

i)


v(t)=dsdt=10+4t,m/sv(t)=\dfrac{ds}{dt}=10+4t, m/s

ii)


a(t)=dvdt=d2sdt2=4 m/s2a(t)=\dfrac{dv}{dt}=\dfrac{d^2s}{dt^2}=4\ m/s^2


d)


v(2)=10+4(2)=18(m/s)v(2)=10+4(2)=18(m/s)

v(6)=10+4(6)=34(m/s)v(6)=10+4(6)=34(m/s)


e) The results are the same.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS