Question #301151

Given: x = tan4t and y = sec4t. Find y’.


1
Expert's answer
2022-02-23T08:27:03-0500
yx=ytxty'_x=\dfrac{y'_t}{x'_t}

xt=4(1cos2(4t))x'_t=4\big(\dfrac{1}{\cos^2(4t)}\big)

yt=4(1cos2(4t))(sin(4t)y'_t=4\big(-\dfrac{1}{\cos^2(4t)}\big)(-\sin(4t)

yx=ytxt=4sin(4t)cos2(4t)4cos2(4t)=sin(4t)y'_x=\dfrac{y'_t}{x'_t}=\dfrac{\dfrac{4\sin (4t)}{\cos^2(4t)}}{\dfrac{4}{\cos^2(4t)}}=\sin (4t)

yx=sin(4t)y'_x=\sin(4t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS