Find the volume of the solid S enclosed by the cylinder x2 + y2 = 9 and the planes y + z = 5 and
= 1. (Hint: Convert to Cylindrical/Polar Coordinates)
"=\\displaystyle\\int_{-3}^{3}\\displaystyle\\int_{-\\sqrt{9-x^2}}^{\\sqrt{9-x^2}}(4-y)dydx"
"=\\displaystyle\\int_{0}^{2\\pi}\\displaystyle\\int_{0}^{3}(4-r\\sin \\theta)rdrd\\theta"
"=\\displaystyle\\int_{0}^{2\\pi}[2r^2-\\dfrac{r^3}{3}\\sin \\theta]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}d\\theta"
"=\\displaystyle\\int_{0}^{2\\pi}(18-9\\sin \\theta)d\\theta"
"=[18\\theta+9\\cos \\theta]\\begin{matrix}\n 2\\pi \\\\\n 0\n\\end{matrix}=36\\pi ({units}^3)"
"36\\pi" cubic units.
Comments
Leave a comment