Examine whether the second order partial derivatives of f at (0,0) exist or not if
f :R² ➡R is defined by
f(x, y) ={x²y/√x+y² , xy≠0 and 0, xy=0
"\\text{By definition }f:\\R\\rightarrow\\R,\\text{defined by,}\\\\\nf(x,y)=\n\\begin{cases} \n\\frac{x^2y}{\\sqrt{x+y^2}} & \\text{if}\\ (x,y)\\neq(0,0)\\\\0 & \\text{if\\ (x,y)}=(0,0) \n\\end{cases}\\\\\n\\text{Now,}\\\\\nf(x,0)=f(0,y)=0\\\\\n\\text{Thus, }f_x(x,0)=f_y(0,y)=0\\\\\n\\Rightarrow f_{xx}(x,0)=f_{yy}(0,y)=0\\\\\n\\text{Thus, the second partial derivatives of the given function exists at (0,0) and are: }\\\\\nf_{xx}(0,0)=f_{yy}(0,0)=f_{xy}(0,0)=0"
Comments
Leave a comment