Question #288866

Examine whether the second order partial derivatives of f at (0,0) exist or not if


f :R² ➡R is defined by


f(x, y) ={x²y/√x+y² , xy≠0 and 0, xy=0


1
Expert's answer
2022-01-25T16:02:06-0500

By definition f:RR,defined by,f(x,y)={x2yx+y2if (x,y)(0,0)0if (x,y)=(0,0)Now,f(x,0)=f(0,y)=0Thus, fx(x,0)=fy(0,y)=0fxx(x,0)=fyy(0,y)=0Thus, the second partial derivatives of the given function exists at (0,0) and are: fxx(0,0)=fyy(0,0)=fxy(0,0)=0\text{By definition }f:\R\rightarrow\R,\text{defined by,}\\ f(x,y)= \begin{cases} \frac{x^2y}{\sqrt{x+y^2}} & \text{if}\ (x,y)\neq(0,0)\\0 & \text{if\ (x,y)}=(0,0) \end{cases}\\ \text{Now,}\\ f(x,0)=f(0,y)=0\\ \text{Thus, }f_x(x,0)=f_y(0,y)=0\\ \Rightarrow f_{xx}(x,0)=f_{yy}(0,y)=0\\ \text{Thus, the second partial derivatives of the given function exists at (0,0) and are: }\\ f_{xx}(0,0)=f_{yy}(0,0)=f_{xy}(0,0)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS