2. Evaluate ∭T x2 dV where T is a solid tetrahedron with vertices (0,0,0),(1,0,0),(0,1,0) and
(0,0,1).
The region can be written as
"E=\\{(x, y, z) \\mid 0 \\leq x \\leq 1,0 \\leq y \\leq 1-x, 0 \\leq z \\leq 1-x-y\\} ."
Hence
"\\begin{aligned}\n\n\\iiint_{E} x^{2} d V &=\\int_{0}^{1} \\int_{0}^{1-x} \\int_{0}^{1-x-y} x^{2} d z d y d x \\\\\n\n&=\\left.\\int_{0}^{1} \\int_{0}^{1-x} x^{2} z\\right|_{z=0} ^{z=1-x-y} d y d x \\\\\n\n&=\\int_{0}^{1} \\int_{0}^{1-x} x^{2}(1-x-y) d y d x \\\\\n\n&=\\int_{0}^{1} \\int_{0}^{1-x}\\left(x^{2}(1-x)-x^{2} y\\right) d y d x \\\\\n\n&=\\left.\\int_{0}^{1}\\left(x^{2}(1-x) y-x^{2} \\frac{y^{2}}{2}\\right)\\right|_{y=0} ^{y=1-x} d x \\\\\n\n&=\\int_{0}^{1}\\left(x^{2}(1-x)^{2}-x^{2} \\frac{(1-x)^{2}}{2}\\right) d x \\\\\n\n&=\\int_{0}^{1} \\frac{1}{2} x^{2}(1-x)^{2} d x \\\\\n\n\\end{aligned}"
"\\begin{aligned}\n&=\\int_{0}^{1} x^{2}\\left(\\frac{1+x^{2}-2 x}{2}\\right) d x \\\\\n&=\\int_{0}^{1}\\left(\\frac{x^{2}}{2}+\\frac{x^{4}}{2}-x^{3}\\right) d x \\\\\n&=\\left[\\frac{x^{3}}{6}+\\frac{x^{5}}{10}-\\frac{x^{4}}{4}\\right]_{0}^{1} \\\\\n&=\\left[\\left(\\frac{1}{6}+\\frac{1}{10}-\\frac{1}{4}\\right)-0\\right] \\\\\n&=\\frac{10+6-15}{60} \\\\\n&=\\frac{1}{60}\n\\end{aligned}"
Comments
Leave a comment