Question #289090

2.   Evaluate ∭T  x2  dV where T is a solid tetrahedron with vertices  (0,0,0),(1,0,0),(0,1,0) and

(0,0,1).


1
Expert's answer
2022-01-22T15:25:51-0500

Solution:

The region can be written as

E={(x,y,z)0x1,0y1x,0z1xy}.E=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq 1-x, 0 \leq z \leq 1-x-y\} .

Hence

Ex2dV=0101x01xyx2dzdydx=0101xx2zz=0z=1xydydx=0101xx2(1xy)dydx=0101x(x2(1x)x2y)dydx=01(x2(1x)yx2y22)y=0y=1xdx=01(x2(1x)2x2(1x)22)dx=0112x2(1x)2dx\begin{aligned} \iiint_{E} x^{2} d V &=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x^{2} d z d y d x \\ &=\left.\int_{0}^{1} \int_{0}^{1-x} x^{2} z\right|_{z=0} ^{z=1-x-y} d y d x \\ &=\int_{0}^{1} \int_{0}^{1-x} x^{2}(1-x-y) d y d x \\ &=\int_{0}^{1} \int_{0}^{1-x}\left(x^{2}(1-x)-x^{2} y\right) d y d x \\ &=\left.\int_{0}^{1}\left(x^{2}(1-x) y-x^{2} \frac{y^{2}}{2}\right)\right|_{y=0} ^{y=1-x} d x \\ &=\int_{0}^{1}\left(x^{2}(1-x)^{2}-x^{2} \frac{(1-x)^{2}}{2}\right) d x \\ &=\int_{0}^{1} \frac{1}{2} x^{2}(1-x)^{2} d x \\ \end{aligned}

=01x2(1+x22x2)dx=01(x22+x42x3)dx=[x36+x510x44]01=[(16+11014)0]=10+61560=160\begin{aligned} &=\int_{0}^{1} x^{2}\left(\frac{1+x^{2}-2 x}{2}\right) d x \\ &=\int_{0}^{1}\left(\frac{x^{2}}{2}+\frac{x^{4}}{2}-x^{3}\right) d x \\ &=\left[\frac{x^{3}}{6}+\frac{x^{5}}{10}-\frac{x^{4}}{4}\right]_{0}^{1} \\ &=\left[\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{4}\right)-0\right] \\ &=\frac{10+6-15}{60} \\ &=\frac{1}{60} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS