The region can be written as
E={(x,y,z)∣0≤x≤1,0≤y≤1−x,0≤z≤1−x−y}.
Hence
∭Ex2dV=∫01∫01−x∫01−x−yx2dzdydx=∫01∫01−xx2z∣∣z=0z=1−x−ydydx=∫01∫01−xx2(1−x−y)dydx=∫01∫01−x(x2(1−x)−x2y)dydx=∫01(x2(1−x)y−x22y2)∣∣y=0y=1−xdx=∫01(x2(1−x)2−x22(1−x)2)dx=∫0121x2(1−x)2dx
=∫01x2(21+x2−2x)dx=∫01(2x2+2x4−x3)dx=[6x3+10x5−4x4]01=[(61+101−41)−0]=6010+6−15=601
Comments