State the Fubini’s Theorem for the Triple Integrals and list all six possible order of
integration
"\\text{Fubini's theorem for triple integral states that if f(x,y,z) is continuous on a rectangular}\\\\\n\\text{box D}=[a,b]\\times[c,d]\\times[e,f], \\text{then}\\\\\n\\int\\int\\int_D\\text{f(x,y,z) dV}=\\int^f_e \\int^d_c \\int^b_a\\text{f(x,y,z) dxdydz}.\\\\\n\\text{Furthermore, for a,b,c,d,e and f real numbers, the iterated triple integral can be}\\\\\n\\text{expressed in six different orderings:}\\\\\n\\int^f_e\\int^d_c\\int^b_a \\text{f(x,y,z) dxdydz}=\\int^f_e(\\int^d_c(\\int^b_a \\text{f(x,y,z) dx)dy)dz}\\\\\n=\\int^d_c(\\int^f_e(\\int^b_a \\text{f(x,y,z) dx)dz)dy}\\\\\n=\\int^b_a(\\int^f_e(\\int^d_c \\text{f(x,y,z) dy)dz)dx}\\\\\n=\\int^f_e(\\int^b_a(\\int^d_c \\text{f(x,y,z) dy)dx)dz}\\\\\n=\\int^d_c(\\int^b_a(\\int^f_e \\text{f(x,y,z) dz)dx)dy}\\\\\n=\\int^b_a(\\int^d_c(\\int^f_e \\text{f(x,y,z) dz)dy)dx}\\\\"
Comments
Leave a comment