Answer to Question #278685 in Calculus for Jack

Question #278685

Find the volume in the first octant bounded by x+y+z=9, and the inside cylinder 3y=27-x^3



1
Expert's answer
2021-12-20T16:09:56-0500

"\\text{setting } z=0, x+y=9\n\\\\\n\\text{solving } \\{x+y=9,3y=27-x^3\\} \\text{simultaneously,}\n\\\\\ny=9-x\\implies3(9-x)=27-x^3\\implies x(x^2-3)=0 \n\\\\\n\\implies x=-\\sqrt{3},0,\\sqrt{3}\n\\\\\n\\text{The volume is given as } V=\\int\\limits_{ - \\sqrt 3 }^{\\sqrt 3 } {\\int_{9 - \\frac{{{x^3}}}{3}}^{9 - x} {\\int_0^{9 - x - y} {dzdydx} } } \n\\\\\n=\\int_{ - \\sqrt 3 }^{\\sqrt 3 } {\\int_{9 - \\frac{{{x^3}}}{3}}^{9 - x} {\\left( {9 - x - y} \\right)} dydx} =\\int_{ - \\sqrt 3 }^{\\sqrt 3 } {\\left[ {9y - xy - \\frac{{{y^2}}}{2}} \\right]_{9 - \\frac{{{x^3}}}{3}}^{9 - x}} dx\n\\\\\n= \\int_{ - \\sqrt 3 }^{\\sqrt 3 } {\\left( {\\frac{1}{2}{x^2} - \\frac{1}{3}{x^4} + \\frac{1}{{18}}{x^6}} \\right)} dx = \\left[ {\\frac{1}{6}{x^3} - \\frac{1}{{15}}{x^5} + \\frac{1}{{126}}{x^7}} \\right]_{ - \\sqrt 3 }^{\\sqrt 3 }\n\\\\\n= \\frac{{8\\sqrt 3 }}{{35}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog