Answer to Question #277301 in Calculus for KING

Question #277301

1. Find the derivative of the following functions:

a. 𝑓(π‘₯) = tan^-1x+cotx / 5cscx

Β b. 𝑦=3 βˆ’ln(2π‘₯+1)

c. 𝑔(π‘₯)=π‘₯𝑒^xβˆ’sinπ‘₯ln(5π‘₯)


1
Expert's answer
2021-12-13T08:46:30-0500

a.

"(tan^{-1}x)'=\\frac{1}{1+x^2}"


"cscx=1\/sinx,cotx=cosx\/snx"


"(cotx \/ 5cscx)'=\\frac{(cotx)'cscx-(cscx)'cotx}{5csc^2x}"


"(cotx)'=-csc^2x=-1\/sin^2x"


"(cscx)'=-cscxcotx=-cosx\/sin^2x"


"(cotx \/ 5cscx)'=\\frac{(-1\/sin^2x)\/sinx+(cosx\/sin^2x)cosx\/sinx}{5\/sin^2x}="


"=\\frac{(cos^2x-1)\/sin^3x}{5\/sin^2x}=-\\frac{sinx}{5}"


"f'(x)=\\frac{1}{1+x^2}-sinx\/5"


b.

"y'=-2\/(2x+1)"


c.

"g'(x)=e^x+xe^x-cosxln(5x)-sinx\/x"


"(tan^{-1}x)'=\\frac{1}{1+x^2}"


"cscx=1\/sinx,cotx=cosx\/snx"


"(cotx \/ 5cscx)'=\\frac{(cotx)'cscx-(cscx)'cotx}{5csc^2x}"


"(cotx)'=-csc^2x=-1\/sin^2x"


"(cscx)'=-cscxcotx=-cosx\/sin^2x"


"(cotx \/ 5cscx)'=\\frac{(-1\/sin^2x)\/sinx+(cosx\/sin^2x)cosx\/sinx}{5\/sin^2x}="


"=\\frac{(cos^2x-1)\/sin^3x}{5\/sin^2x}=-\\frac{sinx}{5}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog