Question #277301

1. Find the derivative of the following functions:

a. 𝑓(π‘₯) = tan^-1x+cotx / 5cscx

 b. 𝑦=3 βˆ’ln(2π‘₯+1)

c. 𝑔(π‘₯)=π‘₯𝑒^xβˆ’sinπ‘₯ln(5π‘₯)


1
Expert's answer
2021-12-13T08:46:30-0500

a.

(tanβˆ’1x)β€²=11+x2(tan^{-1}x)'=\frac{1}{1+x^2}


cscx=1/sinx,cotx=cosx/snxcscx=1/sinx,cotx=cosx/snx


(cotx/5cscx)β€²=(cotx)β€²cscxβˆ’(cscx)β€²cotx5csc2x(cotx / 5cscx)'=\frac{(cotx)'cscx-(cscx)'cotx}{5csc^2x}


(cotx)β€²=βˆ’csc2x=βˆ’1/sin2x(cotx)'=-csc^2x=-1/sin^2x


(cscx)β€²=βˆ’cscxcotx=βˆ’cosx/sin2x(cscx)'=-cscxcotx=-cosx/sin^2x


(cotx/5cscx)β€²=(βˆ’1/sin2x)/sinx+(cosx/sin2x)cosx/sinx5/sin2x=(cotx / 5cscx)'=\frac{(-1/sin^2x)/sinx+(cosx/sin^2x)cosx/sinx}{5/sin^2x}=


=(cos2xβˆ’1)/sin3x5/sin2x=βˆ’sinx5=\frac{(cos^2x-1)/sin^3x}{5/sin^2x}=-\frac{sinx}{5}


fβ€²(x)=11+x2βˆ’sinx/5f'(x)=\frac{1}{1+x^2}-sinx/5


b.

yβ€²=βˆ’2/(2x+1)y'=-2/(2x+1)


c.

gβ€²(x)=ex+xexβˆ’cosxln(5x)βˆ’sinx/xg'(x)=e^x+xe^x-cosxln(5x)-sinx/x


(tanβˆ’1x)β€²=11+x2(tan^{-1}x)'=\frac{1}{1+x^2}


cscx=1/sinx,cotx=cosx/snxcscx=1/sinx,cotx=cosx/snx


(cotx/5cscx)β€²=(cotx)β€²cscxβˆ’(cscx)β€²cotx5csc2x(cotx / 5cscx)'=\frac{(cotx)'cscx-(cscx)'cotx}{5csc^2x}


(cotx)β€²=βˆ’csc2x=βˆ’1/sin2x(cotx)'=-csc^2x=-1/sin^2x


(cscx)β€²=βˆ’cscxcotx=βˆ’cosx/sin2x(cscx)'=-cscxcotx=-cosx/sin^2x


(cotx/5cscx)β€²=(βˆ’1/sin2x)/sinx+(cosx/sin2x)cosx/sinx5/sin2x=(cotx / 5cscx)'=\frac{(-1/sin^2x)/sinx+(cosx/sin^2x)cosx/sinx}{5/sin^2x}=


=(cos2xβˆ’1)/sin3x5/sin2x=βˆ’sinx5=\frac{(cos^2x-1)/sin^3x}{5/sin^2x}=-\frac{sinx}{5}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS