1. Find the derivative of the following functions:
a. π(π₯) = tan^-1x+cotx / 5cscx
Β b. π¦=3 βln(2π₯+1)
c. π(π₯)=π₯π^xβsinπ₯ln(5π₯)
a.
"(tan^{-1}x)'=\\frac{1}{1+x^2}"
"cscx=1\/sinx,cotx=cosx\/snx"
"(cotx \/ 5cscx)'=\\frac{(cotx)'cscx-(cscx)'cotx}{5csc^2x}"
"(cotx)'=-csc^2x=-1\/sin^2x"
"(cscx)'=-cscxcotx=-cosx\/sin^2x"
"(cotx \/ 5cscx)'=\\frac{(-1\/sin^2x)\/sinx+(cosx\/sin^2x)cosx\/sinx}{5\/sin^2x}="
"=\\frac{(cos^2x-1)\/sin^3x}{5\/sin^2x}=-\\frac{sinx}{5}"
"f'(x)=\\frac{1}{1+x^2}-sinx\/5"
b.
"y'=-2\/(2x+1)"
c.
"g'(x)=e^x+xe^x-cosxln(5x)-sinx\/x"
"(tan^{-1}x)'=\\frac{1}{1+x^2}"
"cscx=1\/sinx,cotx=cosx\/snx"
"(cotx \/ 5cscx)'=\\frac{(cotx)'cscx-(cscx)'cotx}{5csc^2x}"
"(cotx)'=-csc^2x=-1\/sin^2x"
"(cscx)'=-cscxcotx=-cosx\/sin^2x"
"(cotx \/ 5cscx)'=\\frac{(-1\/sin^2x)\/sinx+(cosx\/sin^2x)cosx\/sinx}{5\/sin^2x}="
"=\\frac{(cos^2x-1)\/sin^3x}{5\/sin^2x}=-\\frac{sinx}{5}"
Comments
Leave a comment