Answer to Question #274497 in Calculus for nick

Question #274497

Find the volume in the first octant bounded by x+y+z=9, and the inside cylinder 3y=27-x^3



1
Expert's answer
2021-12-21T18:33:35-0500

setting "z=0, x+y=9"

solving "\\left\\{x+y=9,3 y=27-x^{3}\\right\\}" simultaneously,

"\\begin{aligned}\n\n&y=9-x \\Longrightarrow 3(9-x)=27-x^{3} \\Longrightarrow x\\left(x^{2}-3\\right)=0 \\\\\n\n&\\Longrightarrow x=-\\sqrt{3}, 0, \\sqrt{3}\n\n\\end{aligned}"

"\\begin{aligned}\n\n&\\text { The volume is given as } V=\\int_{-\\sqrt{3}}^{\\sqrt{3}} \\int_{9-\\frac{x^{3}}{3}}^{9-x} \\int_{0}^{9-x-y} d z d y d x \\\\\n\n&=\\int_{-\\sqrt{3}}^{\\sqrt{3}} \\int_{9-\\frac{x^{3}}{3}}^{9-x}(9-x-y) d y d x=\\int_{-\\sqrt{3}}^{\\sqrt{3}}\\left[9 y-x y-\\frac{y^{2}}{2}\\right]_{9-\\frac{z^{3}}{3}}^{9-x} d x \\\\\n\n&=\\int_{-\\sqrt{3}}^{\\sqrt{3}}\\left(\\frac{1}{2} x^{2}-\\frac{1}{3} x^{4}+\\frac{1}{18} x^{6}\\right) d x=\\left[\\frac{1}{6} x^{3}-\\frac{1}{15} x^{5}+\\frac{1}{126} x^{7}\\right]_{-\\sqrt{3}}^{\\sqrt{3}} \\\\\n\n&=\\frac{8 \\sqrt{3}}{35}\n\n\\end{aligned}"

Β 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS