Question #274497

Find the volume in the first octant bounded by x+y+z=9, and the inside cylinder 3y=27-x^3



1
Expert's answer
2021-12-21T18:33:35-0500

setting z=0,x+y=9z=0, x+y=9

solving {x+y=9,3y=27x3}\left\{x+y=9,3 y=27-x^{3}\right\} simultaneously,

y=9x3(9x)=27x3x(x23)=0x=3,0,3\begin{aligned} &y=9-x \Longrightarrow 3(9-x)=27-x^{3} \Longrightarrow x\left(x^{2}-3\right)=0 \\ &\Longrightarrow x=-\sqrt{3}, 0, \sqrt{3} \end{aligned}

 The volume is given as V=339x339x09xydzdydx=339x339x(9xy)dydx=33[9yxyy22]9z339xdx=33(12x213x4+118x6)dx=[16x3115x5+1126x7]33=8335\begin{aligned} &\text { The volume is given as } V=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{9-\frac{x^{3}}{3}}^{9-x} \int_{0}^{9-x-y} d z d y d x \\ &=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{9-\frac{x^{3}}{3}}^{9-x}(9-x-y) d y d x=\int_{-\sqrt{3}}^{\sqrt{3}}\left[9 y-x y-\frac{y^{2}}{2}\right]_{9-\frac{z^{3}}{3}}^{9-x} d x \\ &=\int_{-\sqrt{3}}^{\sqrt{3}}\left(\frac{1}{2} x^{2}-\frac{1}{3} x^{4}+\frac{1}{18} x^{6}\right) d x=\left[\frac{1}{6} x^{3}-\frac{1}{15} x^{5}+\frac{1}{126} x^{7}\right]_{-\sqrt{3}}^{\sqrt{3}} \\ &=\frac{8 \sqrt{3}}{35} \end{aligned}

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS