What is the volume of the largest rectangular parallelepiped which can be inscribed in the ellipsoid x2/9+y2/16+z2/36=1? Show that the answer you get gives you the largest volume.(DO NOT USE LAGRANGE MULTIPLIERS)
Let P=(x,y,z) be a point on the ellipsoid with x,y,z>0. Take the eight different points with
Pi(±x,±y,±z)
These points are the vertices of a parallelepiped with the side length
2x,2y and 2z
Then, the volume parallelepiped is:
"V=2x\u22c52y\u22c52z=8xyz"
"z=6\\sqrt{1-x^2\/9-y^2\/16}"
"V=48xy\\sqrt{1-x^2\/9-y^2\/16}"
"V_x=48y\\sqrt{1-x^2\/9-y^2\/16}-\\frac{16x^2y}{3\\sqrt{1-x^2\/9-y^2\/16}}=0"
"9(1-x^2\/9-y^2\/16)-x^2=0"
"V_y=48x\\sqrt{1-x^2\/9-y^2\/16}-\\frac{16y^2x}{3\\sqrt{1-x^2\/9-y^2\/16}}=0"
"9(1-x^2\/9-y^2\/16)-y^2=0"
"x^2=y^2"
"x=y"
"9-2x^2-9x^2\/16=0"
"41x^2=144"
"x=y=\\sqrt{41}\/12"
"V_{xx}=48y\\sqrt{1-x^2\/9-y^2\/16}-\\frac{16x^2y}{3\\sqrt{1-x^2\/9-y^2\/16}}="
"=-\\frac{32xy}{3\\sqrt{1-x^2\/9-y^2\/16}}"
"z=6\\sqrt{1-x^2\/9-x^2\/16}=\\sqrt{144-25x^2}\/2=\\sqrt{19711}\/24"
"V_{max}=\\frac{8\\cdot41\\sqrt{19711}}{144\\cdot24}=13.32"
Comments
Leave a comment