Question #274156

Suppose f(x)={kx + 7 ; x>= 2 ,x^2+19 ; x < 2' , For what value of k is lim x→2 f(x) defined?


1
Expert's answer
2021-12-02T07:23:23-0500

f(x)={x2+19x<2kx+7x2f(x) = \begin{cases} x^2+19 &x<2 \\ kx + 7 &x\geq 2 \end{cases}

limx2f(x)=limx2(x2+19)=(2)2+19=23\lim\limits_{x\to 2^-}f(x)=\lim\limits_{x\to 2^-}(x^2+19)=(2)^2+19=23

limx2+f(x)=limx2+(kx+7)=2k+7\lim\limits_{x\to 2^+}f(x)=\lim\limits_{x\to 2^+}(kx+7)=2k+7

If limx2f(x)\lim\limits_{x\to 2}f(x) is defined, then


limx2f(x)=limx2+f(x)=limx2f(x)\lim\limits_{x\to 2^-}f(x)=\lim\limits_{x\to 2^+}f(x)=\lim\limits_{x\to 2}f(x)

Hence


23=2k+7=>k=823=2k+7=>k=8



limx2f(x)\lim\limits_{x\to 2}f(x) is defined, if k=8.k=8.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS