Question #274428

Find the relative extrema of 𝑓 𝑥 = 3𝑥^5 − 5𝑥^2.


1
Expert's answer
2021-12-06T16:47:51-0500

Relative extrema can only occur at critical pointsGiven,f(x)=3x55x2.Now,f(x)=15x410xAt critical points,f(x)=0Hence,15x410x=05x(3x32)=0    x=0,233Put these values intof(x)=3x55x2.Now,f(0)=0andf(233)=2.29.Hence,f(x)has a local maximum atx=0and local minimum atx=233.\text{Relative extrema can only occur at critical points}\\ \text{Given}, \, f(x) = 3x^5 - 5x^2. \, \text{Now,}\\ f'(x) = 15x^4 - 10x \\ \text{At critical points,} \, f'(x) = 0 \\ \text{Hence}, 15x^4 - 10x = 0\\ 5x(3x^3 - 2) = 0 \\ \implies x = 0, \, \sqrt[3]{\frac{2}{3}}\\ \text{Put these values into} \, f(x) = 3x^5 - 5x^2. \, \text{Now},\\ f(0) = 0 \, \, \text{and}\, \, f(\sqrt[3]{\frac{2}{3}}) = -2.29.\\ \text{Hence,} \, f(x) \, \text{has a local maximum at} \, x = 0 \\ \text{and local minimum at} \, x = \sqrt[3]{\frac{2}{3}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS