Answer to Question #273383 in Calculus for 123

Question #273383

Show that the transformation x = z −"\\frac{b}{3a}" converts the cubic equation ax3 + bx2 + cx + d= 0 into one of the form z3 + 3Hz + G = 0, i.e. the x2 term goes away.


1
Expert's answer
2021-11-30T16:23:47-0500
"x=z-\\dfrac{b}{3a}"

"x^2=z^2-\\dfrac{2bz}{3a}+\\dfrac{b^2}{9a^2}"

"x^3=z^3-\\dfrac{bz^2}{a}+\\dfrac{b^2z}{3a^2}-\\dfrac{b^3}{27a^3}"

Substitute


"az^3-bz^2+\\dfrac{b^2z}{3a}-\\dfrac{b^3}{27a^2}"

"+bz^2-\\dfrac{2b^2z}{3a}+\\dfrac{b^3}{9a^2}"

"cz-\\dfrac{bc}{3a}+d=0"

"az^3+(-\\dfrac{b^2}{3a}+c)z+(\\dfrac{2b^3}{9a^2}-\\dfrac{bc}{3a}+d)=0"

"z^3+3(-\\dfrac{b^2}{3a^2}+\\dfrac{c}{3a})z+(\\dfrac{2b^3}{9a^3}-\\dfrac{bc}{3a^2}+\\dfrac{d}{a})=0"

"H=-\\dfrac{b^2}{3a^2}+\\dfrac{c}{3a}"

"G=\\dfrac{2b^3}{9a^3}-\\dfrac{bc}{3a^2}+\\dfrac{d}{a}"

"z^3+3Hz+G=0"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS