Question #273383

Show that the transformation x = z −b3a\frac{b}{3a} converts the cubic equation ax3 + bx2 + cx + d= 0 into one of the form z3 + 3Hz + G = 0, i.e. the x2 term goes away.


1
Expert's answer
2021-11-30T16:23:47-0500
x=zb3ax=z-\dfrac{b}{3a}

x2=z22bz3a+b29a2x^2=z^2-\dfrac{2bz}{3a}+\dfrac{b^2}{9a^2}

x3=z3bz2a+b2z3a2b327a3x^3=z^3-\dfrac{bz^2}{a}+\dfrac{b^2z}{3a^2}-\dfrac{b^3}{27a^3}

Substitute


az3bz2+b2z3ab327a2az^3-bz^2+\dfrac{b^2z}{3a}-\dfrac{b^3}{27a^2}

+bz22b2z3a+b39a2+bz^2-\dfrac{2b^2z}{3a}+\dfrac{b^3}{9a^2}

czbc3a+d=0cz-\dfrac{bc}{3a}+d=0

az3+(b23a+c)z+(2b39a2bc3a+d)=0az^3+(-\dfrac{b^2}{3a}+c)z+(\dfrac{2b^3}{9a^2}-\dfrac{bc}{3a}+d)=0

z3+3(b23a2+c3a)z+(2b39a3bc3a2+da)=0z^3+3(-\dfrac{b^2}{3a^2}+\dfrac{c}{3a})z+(\dfrac{2b^3}{9a^3}-\dfrac{bc}{3a^2}+\dfrac{d}{a})=0

H=b23a2+c3aH=-\dfrac{b^2}{3a^2}+\dfrac{c}{3a}

G=2b39a3bc3a2+daG=\dfrac{2b^3}{9a^3}-\dfrac{bc}{3a^2}+\dfrac{d}{a}

z3+3Hz+G=0z^3+3Hz+G=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS