Question #273379

If Fn is the n-th Fibonacci number, show that lim limnFn+1Fn=1+52\lim_{n \to \infty} \frac { F_{n+1}}{F_n} = \frac{1+\sqrt{5}}{2}





1
Expert's answer
2021-11-30T16:06:23-0500

Prove that


Fn=15((1+52)n(152)n)F_n=\dfrac{1}{\sqrt{5}}\bigg((\dfrac{1+\sqrt{5}}{2})^{n}-(\dfrac{1-\sqrt{5}}{2})^{n}\bigg)


Let’s  look at the interesting quadratic


x2x1=0x^2-x-1=0

The roots of this quadratic are

x=1±52x=\dfrac{1\pm\sqrt{5}}{2}

This quadratic can also be written as


x2=x+1x^2=x+1

From this, we can write expressions for all xn:x^n:


x=xx=x




x2=x+1x^2=x+1

x3=xx2=x(x+1)x^3=x\cdot x^2=x(x+1)=x2+x=x+1+x=2x+1=x^2+x=x+1+x=2x+1


x4=xx3=x(2x+1)x^4=x\cdot x^3=x(2x+1)=2x2+x=2x+2+x=3x+2=2x^2+x=2x+2+x=3x+2

x5=5x+3=x3+x4x^5=5x+3=x^3+x^4

x6=8x+5=x4+x5x^6=8x+5=x^4+x^5

......

We note that


xn=Fnx+Fn1x^n=F_nx+F_{n-1}

Let the roots of our original quadratic be u=1+52,u=\dfrac{1+\sqrt{5}}{2}, and v=152.v=\dfrac{1-\sqrt{5}}{2}.

Since both uu and vv are roots of the quadratic, they must both satisfy 

xn=Fnx+Fn1x^n=F_nx+F_{n-1}

 So


un=Fnu+Fn1u^n=F_nu+F_{n-1}

vn=Fnv+Fn1v^n=F_nv+F_{n-1}

Subtracting the second equation from the first equation yields


unvn=Fn(uv)u^n-v^n=F_n(u-v)

Then


(1+52)n+1(152)n+1(\dfrac{1+\sqrt{5}}{2})^{n+1}-(\dfrac{1-\sqrt{5}}{2})^{n+1}

=Fn(1+52152)=F_n(\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2})

=5Fn=\sqrt{5}F_n

Then we have


Fn=15((1+52)n(152)n)F_n=\dfrac{1}{\sqrt{5}}\bigg((\dfrac{1+\sqrt{5}}{2})^{n}-(\dfrac{1-\sqrt{5}}{2})^{n}\bigg)


Fn1=15((1+52)n1(152)n1)F_{n-1}=\dfrac{1}{\sqrt{5}}\bigg((\dfrac{1+\sqrt{5}}{2})^{n-1}-(\dfrac{1-\sqrt{5}}{2})^{n-1}\bigg)

FnFn1=(1+52)n(152)n(1+52)n1(152)n1\dfrac{F_n}{F_{n-1}}=\dfrac{(\dfrac{1+\sqrt{5}}{2})^{n}-(\dfrac{1-\sqrt{5}}{2})^{n}}{(\dfrac{1+\sqrt{5}}{2})^{n-1}-(\dfrac{1-\sqrt{5}}{2})^{n-1}}

=1+52152(151+5)n11(151+5)n1=\dfrac{\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}\cdot(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}}{1-(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}}


limnFnFn1=\lim\limits_{n\to \infin}\dfrac{F_n}{F_{n-1}}=

=limn1+52152(151+5)n11(151+5)n1=\lim\limits_{n\to \infin}\dfrac{\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}\cdot(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}}{1-(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}}

=1+52152010=\dfrac{\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}\cdot0}{1-0}

=1+52=\dfrac{1+\sqrt{5}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS