If Fn is the n-th Fibonacci number, show that lim "\\lim_{n \\to \\infty} \\frac { F_{n+1}}{F_n} = \\frac{1+\\sqrt{5}}{2}"
Prove that
Let’s look at the interesting quadratic
The roots of this quadratic are
"x=\\dfrac{1\\pm\\sqrt{5}}{2}"This quadratic can also be written as
From this, we can write expressions for all "x^n:"
"x^3=x\\cdot x^2=x(x+1)""=x^2+x=x+1+x=2x+1"
"x^5=5x+3=x^3+x^4"
"x^6=8x+5=x^4+x^5"
"..."
We note that
Let the roots of our original quadratic be "u=\\dfrac{1+\\sqrt{5}}{2}," and "v=\\dfrac{1-\\sqrt{5}}{2}."
Since both "u" and "v" are roots of the quadratic, they must both satisfy
"x^n=F_nx+F_{n-1}"So
"v^n=F_nv+F_{n-1}"
Subtracting the second equation from the first equation yields
Then
"=F_n(\\dfrac{1+\\sqrt{5}}{2}-\\dfrac{1-\\sqrt{5}}{2})"
"=\\sqrt{5}F_n"
Then we have
"\\dfrac{F_n}{F_{n-1}}=\\dfrac{(\\dfrac{1+\\sqrt{5}}{2})^{n}-(\\dfrac{1-\\sqrt{5}}{2})^{n}}{(\\dfrac{1+\\sqrt{5}}{2})^{n-1}-(\\dfrac{1-\\sqrt{5}}{2})^{n-1}}"
"=\\dfrac{\\dfrac{1+\\sqrt{5}}{2}-\\dfrac{1-\\sqrt{5}}{2}\\cdot(\\dfrac{1-\\sqrt{5}}{1+\\sqrt{5}})^{n-1}}{1-(\\dfrac{1-\\sqrt{5}}{1+\\sqrt{5}})^{n-1}}"
"=\\lim\\limits_{n\\to \\infin}\\dfrac{\\dfrac{1+\\sqrt{5}}{2}-\\dfrac{1-\\sqrt{5}}{2}\\cdot(\\dfrac{1-\\sqrt{5}}{1+\\sqrt{5}})^{n-1}}{1-(\\dfrac{1-\\sqrt{5}}{1+\\sqrt{5}})^{n-1}}"
"=\\dfrac{\\dfrac{1+\\sqrt{5}}{2}-\\dfrac{1-\\sqrt{5}}{2}\\cdot0}{1-0}"
"=\\dfrac{1+\\sqrt{5}}{2}"
Comments
Leave a comment