Prove that
F n = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) F_n=\dfrac{1}{\sqrt{5}}\bigg((\dfrac{1+\sqrt{5}}{2})^{n}-(\dfrac{1-\sqrt{5}}{2})^{n}\bigg) F n = 5 1 ( ( 2 1 + 5 ) n − ( 2 1 − 5 ) n )
Let’s look at the interesting quadratic
x 2 − x − 1 = 0 x^2-x-1=0 x 2 − x − 1 = 0 The roots of this quadratic are
x = 1 ± 5 2 x=\dfrac{1\pm\sqrt{5}}{2} x = 2 1 ± 5 This quadratic can also be written as
x 2 = x + 1 x^2=x+1 x 2 = x + 1 From this, we can write expressions for all x n : x^n: x n :
x = x x=x x = x
x 2 = x + 1 x^2=x+1 x 2 = x + 1
x 3 = x ⋅ x 2 = x ( x + 1 ) x^3=x\cdot x^2=x(x+1) x 3 = x ⋅ x 2 = x ( x + 1 ) = x 2 + x = x + 1 + x = 2 x + 1 =x^2+x=x+1+x=2x+1 = x 2 + x = x + 1 + x = 2 x + 1
x 4 = x ⋅ x 3 = x ( 2 x + 1 ) x^4=x\cdot x^3=x(2x+1) x 4 = x ⋅ x 3 = x ( 2 x + 1 ) = 2 x 2 + x = 2 x + 2 + x = 3 x + 2 =2x^2+x=2x+2+x=3x+2 = 2 x 2 + x = 2 x + 2 + x = 3 x + 2
x 5 = 5 x + 3 = x 3 + x 4 x^5=5x+3=x^3+x^4 x 5 = 5 x + 3 = x 3 + x 4
x 6 = 8 x + 5 = x 4 + x 5 x^6=8x+5=x^4+x^5 x 6 = 8 x + 5 = x 4 + x 5
. . . ... ... We note that
x n = F n x + F n − 1 x^n=F_nx+F_{n-1} x n = F n x + F n − 1 Let the roots of our original quadratic be u = 1 + 5 2 , u=\dfrac{1+\sqrt{5}}{2}, u = 2 1 + 5 , and v = 1 − 5 2 . v=\dfrac{1-\sqrt{5}}{2}. v = 2 1 − 5 .
Since both u u u and v v v are roots of the quadratic, they must both satisfy
x n = F n x + F n − 1 x^n=F_nx+F_{n-1} x n = F n x + F n − 1 So
u n = F n u + F n − 1 u^n=F_nu+F_{n-1} u n = F n u + F n − 1
v n = F n v + F n − 1 v^n=F_nv+F_{n-1} v n = F n v + F n − 1 Subtracting the second equation from the first equation yields
u n − v n = F n ( u − v ) u^n-v^n=F_n(u-v) u n − v n = F n ( u − v ) Then
( 1 + 5 2 ) n + 1 − ( 1 − 5 2 ) n + 1 (\dfrac{1+\sqrt{5}}{2})^{n+1}-(\dfrac{1-\sqrt{5}}{2})^{n+1} ( 2 1 + 5 ) n + 1 − ( 2 1 − 5 ) n + 1
= F n ( 1 + 5 2 − 1 − 5 2 ) =F_n(\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}) = F n ( 2 1 + 5 − 2 1 − 5 )
= 5 F n =\sqrt{5}F_n = 5 F n Then we have
F n = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) F_n=\dfrac{1}{\sqrt{5}}\bigg((\dfrac{1+\sqrt{5}}{2})^{n}-(\dfrac{1-\sqrt{5}}{2})^{n}\bigg) F n = 5 1 ( ( 2 1 + 5 ) n − ( 2 1 − 5 ) n )
F n − 1 = 1 5 ( ( 1 + 5 2 ) n − 1 − ( 1 − 5 2 ) n − 1 ) F_{n-1}=\dfrac{1}{\sqrt{5}}\bigg((\dfrac{1+\sqrt{5}}{2})^{n-1}-(\dfrac{1-\sqrt{5}}{2})^{n-1}\bigg) F n − 1 = 5 1 ( ( 2 1 + 5 ) n − 1 − ( 2 1 − 5 ) n − 1 )
F n F n − 1 = ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ( 1 + 5 2 ) n − 1 − ( 1 − 5 2 ) n − 1 \dfrac{F_n}{F_{n-1}}=\dfrac{(\dfrac{1+\sqrt{5}}{2})^{n}-(\dfrac{1-\sqrt{5}}{2})^{n}}{(\dfrac{1+\sqrt{5}}{2})^{n-1}-(\dfrac{1-\sqrt{5}}{2})^{n-1}} F n − 1 F n = ( 2 1 + 5 ) n − 1 − ( 2 1 − 5 ) n − 1 ( 2 1 + 5 ) n − ( 2 1 − 5 ) n
= 1 + 5 2 − 1 − 5 2 ⋅ ( 1 − 5 1 + 5 ) n − 1 1 − ( 1 − 5 1 + 5 ) n − 1 =\dfrac{\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}\cdot(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}}{1-(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}} = 1 − ( 1 + 5 1 − 5 ) n − 1 2 1 + 5 − 2 1 − 5 ⋅ ( 1 + 5 1 − 5 ) n − 1
lim n → ∞ F n F n − 1 = \lim\limits_{n\to \infin}\dfrac{F_n}{F_{n-1}}= n → ∞ lim F n − 1 F n =
= lim n → ∞ 1 + 5 2 − 1 − 5 2 ⋅ ( 1 − 5 1 + 5 ) n − 1 1 − ( 1 − 5 1 + 5 ) n − 1 =\lim\limits_{n\to \infin}\dfrac{\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}\cdot(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}}{1-(\dfrac{1-\sqrt{5}}{1+\sqrt{5}})^{n-1}} = n → ∞ lim 1 − ( 1 + 5 1 − 5 ) n − 1 2 1 + 5 − 2 1 − 5 ⋅ ( 1 + 5 1 − 5 ) n − 1
= 1 + 5 2 − 1 − 5 2 ⋅ 0 1 − 0 =\dfrac{\dfrac{1+\sqrt{5}}{2}-\dfrac{1-\sqrt{5}}{2}\cdot0}{1-0} = 1 − 0 2 1 + 5 − 2 1 − 5 ⋅ 0
= 1 + 5 2 =\dfrac{1+\sqrt{5}}{2} = 2 1 + 5
Comments