Answer to Question #273210 in Calculus for Sanjeev

Question #273210

Prove that integral of 0 to pie √x e^-x3 dx = √pie/3

1
Expert's answer
2021-11-30T09:29:12-0500

Indefinite integral

"\\int \\sqrt{x}e^{-x^3}dx"

Substitution "u=x^{3\/2}, du=\\dfrac{3}{2}x^{1\/2} dx"


"\\int \\sqrt{x}e^{-x^3}dx=\\int u^{1\/3}e^{-u^2}(\\dfrac{2}{3}u^{-1\/3})du"

"=\\dfrac{2}{3}\\int e^{-u^2}du"

Use that "\\displaystyle\\int_{0}^{\\infin}e^{-t^2}dt=\\dfrac{\\sqrt{\\pi }}{2}"

Then


"\\displaystyle\\int_{0}^{\\infin}\\sqrt{x}e^{-x^3}dx=\\dfrac{2}{3}\\displaystyle\\int_{0}^{\\infin}e^{-u^2}du"

"=\\dfrac{2}{3}(\\dfrac{\\sqrt{\\pi }}{2})=\\dfrac{\\sqrt{\\pi }}{3}"

Therefore


"\\displaystyle\\int_{0}^{\\infin}\\sqrt{x}e^{-x^3}dx=\\dfrac{\\sqrt{\\pi }}{3}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS