Question #273210

Prove that integral of 0 to pie √x e^-x3 dx = √pie/3

1
Expert's answer
2021-11-30T09:29:12-0500

Indefinite integral

xex3dx\int \sqrt{x}e^{-x^3}dx

Substitution u=x3/2,du=32x1/2dxu=x^{3/2}, du=\dfrac{3}{2}x^{1/2} dx


xex3dx=u1/3eu2(23u1/3)du\int \sqrt{x}e^{-x^3}dx=\int u^{1/3}e^{-u^2}(\dfrac{2}{3}u^{-1/3})du

=23eu2du=\dfrac{2}{3}\int e^{-u^2}du

Use that 0et2dt=π2\displaystyle\int_{0}^{\infin}e^{-t^2}dt=\dfrac{\sqrt{\pi }}{2}

Then


0xex3dx=230eu2du\displaystyle\int_{0}^{\infin}\sqrt{x}e^{-x^3}dx=\dfrac{2}{3}\displaystyle\int_{0}^{\infin}e^{-u^2}du

=23(π2)=π3=\dfrac{2}{3}(\dfrac{\sqrt{\pi }}{2})=\dfrac{\sqrt{\pi }}{3}

Therefore


0xex3dx=π3\displaystyle\int_{0}^{\infin}\sqrt{x}e^{-x^3}dx=\dfrac{\sqrt{\pi }}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS