Indefinite integral
∫ x e − x 3 d x \int \sqrt{x}e^{-x^3}dx ∫ x e − x 3 d x Substitution u = x 3 / 2 , d u = 3 2 x 1 / 2 d x u=x^{3/2}, du=\dfrac{3}{2}x^{1/2} dx u = x 3/2 , d u = 2 3 x 1/2 d x
∫ x e − x 3 d x = ∫ u 1 / 3 e − u 2 ( 2 3 u − 1 / 3 ) d u \int \sqrt{x}e^{-x^3}dx=\int u^{1/3}e^{-u^2}(\dfrac{2}{3}u^{-1/3})du ∫ x e − x 3 d x = ∫ u 1/3 e − u 2 ( 3 2 u − 1/3 ) d u
= 2 3 ∫ e − u 2 d u =\dfrac{2}{3}\int e^{-u^2}du = 3 2 ∫ e − u 2 d u Use that ∫ 0 ∞ e − t 2 d t = π 2 \displaystyle\int_{0}^{\infin}e^{-t^2}dt=\dfrac{\sqrt{\pi }}{2} ∫ 0 ∞ e − t 2 d t = 2 π
Then
∫ 0 ∞ x e − x 3 d x = 2 3 ∫ 0 ∞ e − u 2 d u \displaystyle\int_{0}^{\infin}\sqrt{x}e^{-x^3}dx=\dfrac{2}{3}\displaystyle\int_{0}^{\infin}e^{-u^2}du ∫ 0 ∞ x e − x 3 d x = 3 2 ∫ 0 ∞ e − u 2 d u
= 2 3 ( π 2 ) = π 3 =\dfrac{2}{3}(\dfrac{\sqrt{\pi }}{2})=\dfrac{\sqrt{\pi }}{3} = 3 2 ( 2 π ) = 3 π Therefore
∫ 0 ∞ x e − x 3 d x = π 3 \displaystyle\int_{0}^{\infin}\sqrt{x}e^{-x^3}dx=\dfrac{\sqrt{\pi }}{3} ∫ 0 ∞ x e − x 3 d x = 3 π
Comments