perform this using the linear differential equation of higher order in operator form: (D2 + 3D + 2) (e-2x + 3x²)
Solution;
Given;
"(D^2+3D+2)y=e^{-2x}+3x^2"
The auxiliary equation is;
"m^2+3m+2=0"
"(m+2)(m+1)=0"
"m=-2 ,-1"
Therefore,the complementary solution is;
"C.F=c_1e^{-x}+c_2e^{-2x}"
The particular solutions are;
For "e^{-2x}" ;
"P.I=\\frac{1}{(D+2)(D+1)}e^{-2x}"
"P.I=\\frac{e^{-2x}}{(-2+1)(D+2-2)}[1]"
"P.I=\\frac{e^{-2x}}{(-1)}\\frac1D{1}=-e^{-2x}x"
For "3x^2";
"P.I=[\\frac{1}{D^2+3D+2}]^{-1}3x^2"
"P.I=\\frac12[1+\\frac{(D^2+3D)}{2}+...]3x^2"
"P.I=\\frac12[3x^2+3+9x]"
Hence;
"y(x)=C.F+P.I"
"y(x)=c_1e^{-x}+c_2e^{-2x}-xe^{-2x}+\\frac32x^2+\\frac92x+\\frac32"
Comments
Leave a comment