Solution;
Given;
(D2+3D+2)y=e−2x+3x2
The auxiliary equation is;
m2+3m+2=0
(m+2)(m+1)=0
m=−2,−1
Therefore,the complementary solution is;
C.F=c1e−x+c2e−2x
The particular solutions are;
For e−2x ;
P.I=(D+2)(D+1)1e−2x
P.I=(−2+1)(D+2−2)e−2x[1]
P.I=(−1)e−2xD11=−e−2xx
For 3x2;
P.I=[D2+3D+21]−13x2
P.I=21[1+2(D2+3D)+...]3x2
P.I=21[3x2+3+9x]
Hence;
y(x)=C.F+P.I
y(x)=c1e−x+c2e−2x−xe−2x+23x2+29x+23
Comments
Leave a comment