Answer to Question #272862 in Calculus for Lads

Question #272862

perform this using the linear differential equation of higher order in operator form: (D2 + 3D + 2) (e-2x + 3x²)


1
Expert's answer
2021-11-29T16:42:18-0500

Solution;

Given;

(D2+3D+2)y=e2x+3x2(D^2+3D+2)y=e^{-2x}+3x^2

The auxiliary equation is;

m2+3m+2=0m^2+3m+2=0

(m+2)(m+1)=0(m+2)(m+1)=0

m=2,1m=-2 ,-1

Therefore,the complementary solution is;

C.F=c1ex+c2e2xC.F=c_1e^{-x}+c_2e^{-2x}

The particular solutions are;

For e2xe^{-2x} ;

P.I=1(D+2)(D+1)e2xP.I=\frac{1}{(D+2)(D+1)}e^{-2x}

P.I=e2x(2+1)(D+22)[1]P.I=\frac{e^{-2x}}{(-2+1)(D+2-2)}[1]

P.I=e2x(1)1D1=e2xxP.I=\frac{e^{-2x}}{(-1)}\frac1D{1}=-e^{-2x}x

For 3x23x^2;

P.I=[1D2+3D+2]13x2P.I=[\frac{1}{D^2+3D+2}]^{-1}3x^2

P.I=12[1+(D2+3D)2+...]3x2P.I=\frac12[1+\frac{(D^2+3D)}{2}+...]3x^2

P.I=12[3x2+3+9x]P.I=\frac12[3x^2+3+9x]

Hence;

y(x)=C.F+P.Iy(x)=C.F+P.I

y(x)=c1ex+c2e2xxe2x+32x2+92x+32y(x)=c_1e^{-x}+c_2e^{-2x}-xe^{-2x}+\frac32x^2+\frac92x+\frac32



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment