Verify that the function u(x,y,z)=1/(√x^2+y^2+z^2) is a solution of the three-dimensional Laplace equation Uxx + Uyy +Uzz = 0.
"u(x,y,z)=\\frac{1}{\\sqrt{x^2+y^2+z^2}}"
"u_x=-\\frac{x}{(x^2+y^2+z^2)^{3\/2}}"
"u_{xx}=-\\frac{1}{(x^2+y^2+z^2)^{3\/2}}+\\frac{3x^2}{(x^2+y^2+z^2)^{5\/2}}=\\frac{3x^2-(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{5\/2}}=\\frac{2x^2-y^2-z^2}{(x^2+y^2+z^2)^{5\/2}}"
"u_{yy}= \\frac{2y^2-x^2-z^2}{(x^2+y^2+z^2)^{5\/2}}"
"u_{zz}= \\frac{2z^2-x^2-y^2}{(x^2+y^2+z^2)^{5\/2}}"
"u_{xx}+u_{yy}+u_{zz}= \\frac{2x^2-y^2-z^2}{(x^2+y^2+z^2)^{5\/2}}+ \\frac{2y^2-x^2-z^2}{(x^2+y^2+z^2)^{5\/2}}+ \\frac{2z^2-x^2-y^2}{(x^2+y^2+z^2)^{5\/2}}=0"
So, "u(x,y,z)=\\frac{1}{\\sqrt{x^2+y^2+z^2}}" is a solution of the three-dimensional Laplace equation "u_{xx}+u_{yy}+u_{zz}=0"
Comments
Leave a comment