Question #272839

Verify that the function u(x,y,z)=1/(√x^2+y^2+z^2) is a solution of the three-dimensional Laplace equation Uxx + Uyy +Uzz = 0.



1
Expert's answer
2021-11-29T13:42:23-0500

u(x,y,z)=1x2+y2+z2u(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}


ux=x(x2+y2+z2)3/2u_x=-\frac{x}{(x^2+y^2+z^2)^{3/2}}

uxx=1(x2+y2+z2)3/2+3x2(x2+y2+z2)5/2=3x2(x2+y2+z2)(x2+y2+z2)5/2=2x2y2z2(x2+y2+z2)5/2u_{xx}=-\frac{1}{(x^2+y^2+z^2)^{3/2}}+\frac{3x^2}{(x^2+y^2+z^2)^{5/2}}=\frac{3x^2-(x^2+y^2+z^2)}{(x^2+y^2+z^2)^{5/2}}=\frac{2x^2-y^2-z^2}{(x^2+y^2+z^2)^{5/2}}

uyy=2y2x2z2(x2+y2+z2)5/2u_{yy}= \frac{2y^2-x^2-z^2}{(x^2+y^2+z^2)^{5/2}}

uzz=2z2x2y2(x2+y2+z2)5/2u_{zz}= \frac{2z^2-x^2-y^2}{(x^2+y^2+z^2)^{5/2}}


uxx+uyy+uzz=2x2y2z2(x2+y2+z2)5/2+2y2x2z2(x2+y2+z2)5/2+2z2x2y2(x2+y2+z2)5/2=0u_{xx}+u_{yy}+u_{zz}= \frac{2x^2-y^2-z^2}{(x^2+y^2+z^2)^{5/2}}+ \frac{2y^2-x^2-z^2}{(x^2+y^2+z^2)^{5/2}}+ \frac{2z^2-x^2-y^2}{(x^2+y^2+z^2)^{5/2}}=0


So, u(x,y,z)=1x2+y2+z2u(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}} is a solution of the three-dimensional Laplace equation uxx+uyy+uzz=0u_{xx}+u_{yy}+u_{zz}=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS