y=1+Ae−ktl
a) dtdy=(1+Ae−kt)2−lAe−kt(−k)
=(1+Ae−kt)2kAle−kt
y′(t=0)=1+A)2kAl
At time t y is increasing at a rate =1+A)2kAl
b) the rate of growth of y increases as t increases this is because it is always positive.
c) y′′=(1+Ae−kt)4(1+Ae−kt)2(−k2lAe−kt)−kAle−kt⋅2(1+Ae−kt)(−kA)=0
⟹(1+Ae−kt)(−1)+2=0
⟹1+Ae−kt=2
e−kt=A1
t=−klnA1
The population is growing most rapidly at time, t=−klnA1
Comments