perform this using the linear differential equation of higher order in operator form: (D2 + 3D + 2) (e^-2x + 3x²)
(D2+3D+2)(ex−2x+3x2)=D2(ex−2x+3x2)+3D(ex−2x+3n2)+2(ex−2x+3x2)=d2dx2(ex−2x+3x2)+3ddx(ex−2x+3x2)+2(ex−2x+3x2)=ddx[ddx(ex−2x+3x2)]+3(ex−2+6x)+2(ex−2x+3x2)=ddx[ex−2+6x]+3ex−6+18x+2ex−4x+6x2=ex+6+3ex−6+18x+2ex−4x+6x2=6ex+14x+6x2\begin{aligned} &\left(D^{2}+3 D+2\right)\left(e^{x}-2 x+3 x^{2}\right)\\ &=D^{2}\left(e^{x}-2 x+3 x^{2}\right)+3 D\left(e^{x}-2 x+3 n^{2}\right) +2\left(e^{x}-2 x+3 x^{2}\right)\\ &= \frac{d^{2}}{d x^{2}}\left(e^{x}-2 x+3 x^{2}\right)+3 \frac{d}{d x}\left(e^{x}-2 x+3 x^{2}\right) +2\left(e^{x}-2 x+3 x^{2}\right)\\ &=\frac{d}{d x}\left[\frac{d}{d x}\left(e^{x}-2 x+3 x^{2}\right)\right]+3\left(e^{x}-2+6 x\right) +2\left(e^{x}-2 x+3 x^{2}\right)\\ &=\frac{d}{d x}\left[e^{x}-2+6 x\right]+3 e^{x}-6+18 x+2 e^{x}-4 x+6 x^{2}\\ &=e^{x}+6+3 e^{x}-6+18 x+2 e^{x}-4 x+6 x^{2}\\ &=6 e^{x}+14 x+6 x^{2} \end{aligned}(D2+3D+2)(ex−2x+3x2)=D2(ex−2x+3x2)+3D(ex−2x+3n2)+2(ex−2x+3x2)=dx2d2(ex−2x+3x2)+3dxd(ex−2x+3x2)+2(ex−2x+3x2)=dxd[dxd(ex−2x+3x2)]+3(ex−2+6x)+2(ex−2x+3x2)=dxd[ex−2+6x]+3ex−6+18x+2ex−4x+6x2=ex+6+3ex−6+18x+2ex−4x+6x2=6ex+14x+6x2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments