Answer to Question #272871 in Calculus for Lads

Question #272871

perform this using the linear differential equation of higher order in operator form: (D2 + 3D + 2) (e^-2x + 3x²)

1
Expert's answer
2021-11-30T16:39:32-0500

"\\begin{aligned}\n&\\left(D^{2}+3 D+2\\right)\\left(e^{x}-2 x+3 x^{2}\\right)\\\\\n&=D^{2}\\left(e^{x}-2 x+3 x^{2}\\right)+3 D\\left(e^{x}-2 x+3 n^{2}\\right)\n+2\\left(e^{x}-2 x+3 x^{2}\\right)\\\\\n&= \\frac{d^{2}}{d x^{2}}\\left(e^{x}-2 x+3 x^{2}\\right)+3 \\frac{d}{d x}\\left(e^{x}-2 x+3 x^{2}\\right)\n+2\\left(e^{x}-2 x+3 x^{2}\\right)\\\\\n&=\\frac{d}{d x}\\left[\\frac{d}{d x}\\left(e^{x}-2 x+3 x^{2}\\right)\\right]+3\\left(e^{x}-2+6 x\\right)\n+2\\left(e^{x}-2 x+3 x^{2}\\right)\\\\\n&=\\frac{d}{d x}\\left[e^{x}-2+6 x\\right]+3 e^{x}-6+18 x+2 e^{x}-4 x+6 x^{2}\\\\\n&=e^{x}+6+3 e^{x}-6+18 x+2 e^{x}-4 x+6 x^{2}\\\\\n&=6 e^{x}+14 x+6 x^{2} \n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS