f(x,y)=3x2−y2+x3
fx=6x+3x2
fy=−2y Find the critical point(s)
fx=0fy=0=>6x+3x2=0−2y=0 Point(−2,0),Point(0,0)
fxx=6+6x
fxy=0
fyy=−2
D=∣∣6+6x00−2∣∣=−12−12x Point(−2,0)
fxx=6+6(−2)=−6<0
D=−12−12(−2)=12>0 Then f(−2,0) is a local maximum.
Point(0,0)
fxx=6+6(0)=6>0
D=−12−12(0)=−12<0 Then Point(0,0) is a saddle point.
f(−2,0)=3(−2)2−(0)2+(−2)3=4
Comments
Leave a comment