Answer to Question #265849 in Calculus for chaitu

Question #265849

Find the extrema of

3x^2-y^2+x^3


1
Expert's answer
2021-11-15T16:25:09-0500
f(x,y)=3x2y2+x3f(x, y)=3x^2-y^2+x^3

fx=6x+3x2f_x=6x+3x^2

fy=2yf_y=-2y

Find the critical point(s)


fx=0fy=0=>6x+3x2=02y=0\begin{matrix} f_x=0 \\ f_y=0 \end{matrix}=>\begin{matrix} 6x+3x^2=0 \\ -2y=0 \end{matrix}

Point(2,0),Point(0,0)Point(-2,0), Point(0,0)


fxx=6+6xf_{xx}=6+6x

fxy=0f_{xy}=0

fyy=2f_{yy}=-2

D=6+6x002=1212xD=\begin{vmatrix} 6+6x & 0 \\ 0 & -2 \end{vmatrix}=-12-12x

Point(2,0)Point(-2,0)


fxx=6+6(2)=6<0f_{xx}=6+6(-2)=-6<0

D=1212(2)=12>0D=-12-12(-2)=12>0

Then f(2,0)f(-2, 0) is a local maximum.


Point(0,0)Point(0,0)


fxx=6+6(0)=6>0f_{xx}=6+6(0)=6>0

D=1212(0)=12<0D=-12-12(0)=-12<0

Then Point(0,0)Point(0,0) is a saddle point.



f(2,0)=3(2)2(0)2+(2)3=4f(-2, 0)=3(-2)^2-(0)^2+(-2)^3=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment