f ( x , y ) = 3 x 2 − y 2 + x 3 f(x, y)=3x^2-y^2+x^3 f ( x , y ) = 3 x 2 − y 2 + x 3
f x = 6 x + 3 x 2 f_x=6x+3x^2 f x = 6 x + 3 x 2
f y = − 2 y f_y=-2y f y = − 2 y Find the critical point(s)
f x = 0 f y = 0 = > 6 x + 3 x 2 = 0 − 2 y = 0 \begin{matrix}
f_x=0 \\
f_y=0
\end{matrix}=>\begin{matrix}
6x+3x^2=0 \\
-2y=0
\end{matrix} f x = 0 f y = 0 => 6 x + 3 x 2 = 0 − 2 y = 0 P o i n t ( − 2 , 0 ) , P o i n t ( 0 , 0 ) Point(-2,0), Point(0,0) P o in t ( − 2 , 0 ) , P o in t ( 0 , 0 )
f x x = 6 + 6 x f_{xx}=6+6x f xx = 6 + 6 x
f x y = 0 f_{xy}=0 f x y = 0
f y y = − 2 f_{yy}=-2 f yy = − 2
D = ∣ 6 + 6 x 0 0 − 2 ∣ = − 12 − 12 x D=\begin{vmatrix}
6+6x & 0 \\
0 & -2
\end{vmatrix}=-12-12x D = ∣ ∣ 6 + 6 x 0 0 − 2 ∣ ∣ = − 12 − 12 x P o i n t ( − 2 , 0 ) Point(-2,0) P o in t ( − 2 , 0 )
f x x = 6 + 6 ( − 2 ) = − 6 < 0 f_{xx}=6+6(-2)=-6<0 f xx = 6 + 6 ( − 2 ) = − 6 < 0
D = − 12 − 12 ( − 2 ) = 12 > 0 D=-12-12(-2)=12>0 D = − 12 − 12 ( − 2 ) = 12 > 0 Then f ( − 2 , 0 ) f(-2, 0) f ( − 2 , 0 ) is a local maximum.
P o i n t ( 0 , 0 ) Point(0,0) P o in t ( 0 , 0 )
f x x = 6 + 6 ( 0 ) = 6 > 0 f_{xx}=6+6(0)=6>0 f xx = 6 + 6 ( 0 ) = 6 > 0
D = − 12 − 12 ( 0 ) = − 12 < 0 D=-12-12(0)=-12<0 D = − 12 − 12 ( 0 ) = − 12 < 0 Then P o i n t ( 0 , 0 ) Point(0,0) P o in t ( 0 , 0 ) is a saddle point.
f ( − 2 , 0 ) = 3 ( − 2 ) 2 − ( 0 ) 2 + ( − 2 ) 3 = 4 f(-2, 0)=3(-2)^2-(0)^2+(-2)^3=4 f ( − 2 , 0 ) = 3 ( − 2 ) 2 − ( 0 ) 2 + ( − 2 ) 3 = 4
Comments