The n-th harmonic number is defined by
Hn=∑n, i=1 (1/i) =1+1/2+1/3+…+1/n.
Show that
Hn=∫(1>0) 1−x^n/1−x dx.
x=1−ux=1-ux=1−u
∫011−xn1−xdx=−∫101−(1−u)nudu=∫011−(1−u)nudu=\int^1_0\frac{1-x^n}{1-x}dx=-\int^0_1\frac{1-(1-u)^n}{u}du=\int^1_0\frac{1-(1-u)^n}{u}du=∫011−x1−xndx=−∫10u1−(1−u)ndu=∫01u1−(1−u)ndu=
=∫01[∑k=1n(−1)k−1(nk)uk−1]du=∑k=1n(−1)k−1(nk)∫01uk−1du==\int^1_0[\displaystyle{\sum_{k=1}^n(-1)^{k-1}\begin{pmatrix} n \\ k \end{pmatrix}u^{k-1}}]du=\displaystyle{\sum_{k=1}^n(-1)^{k-1}}\begin{pmatrix} n \\ k \end{pmatrix}\int^1_0u^{k-1}du==∫01[k=1∑n(−1)k−1(nk)uk−1]du=k=1∑n(−1)k−1(nk)∫01uk−1du=
=∑k=1n(−1)k−11k(nk)=\displaystyle{\sum_{k=1}^n(-1)^{k-1}}\frac{1}{k}\begin{pmatrix} n \\ k \end{pmatrix}=k=1∑n(−1)k−1k1(nk)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments