Question #265730

The n-th harmonic number is defined by



Hn=∑n, i=1 (1/i) =1+1/2+1/3+…+1/n.



Show that



Hn=∫(1>0) 1−x^n/1−x dx.

1
Expert's answer
2021-11-15T16:44:22-0500

x=1ux=1-u


011xn1xdx=101(1u)nudu=011(1u)nudu=\int^1_0\frac{1-x^n}{1-x}dx=-\int^0_1\frac{1-(1-u)^n}{u}du=\int^1_0\frac{1-(1-u)^n}{u}du=


=01[k=1n(1)k1(nk)uk1]du=k=1n(1)k1(nk)01uk1du==\int^1_0[\displaystyle{\sum_{k=1}^n(-1)^{k-1}\begin{pmatrix} n \\ k \end{pmatrix}u^{k-1}}]du=\displaystyle{\sum_{k=1}^n(-1)^{k-1}}\begin{pmatrix} n \\ k \end{pmatrix}\int^1_0u^{k-1}du=


=k=1n(1)k11k(nk)=\displaystyle{\sum_{k=1}^n(-1)^{k-1}}\frac{1}{k}\begin{pmatrix} n \\ k \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS