Let I=∫0π1+cos2xxsinxdx
Let us substitute u = π-x
So du = -dx and x=0 => u = π and x = π => u = 0
I=∫0π1+cos2xxsinxdx=−∫π01+cos2(π−u)(π−u)sin(π−u)du = −∫π01+cos2u(π−u)sinudu since sin(π-u)=sinu and cos²(π-u)={-cos(u)}²=cos²u
So I=∫0π1+cos2u(π−u)sinudu [by property of definite integral that ∫abf(x)dx=−∫baf(x)dx ]
Therefore I=∫0π1+cos2uπsinudu−∫0π1+cos2uusinudu
=> I=π∫0π1+cos2usinudu−I , since ∫0π1+cos2uusinudu=∫0π1+cos2xxsinxdx
=> 2I=π∫0π1+cos2usinudu
=> I=2π∫0π1+cos2usinudu
Let -cos u = z
So sin u du = dz and also when u=0 , z= -1 and when u = π , z = 1
Therefore I=2π∫−111+(−z)2dz=2π∫−111+z2dz
=> I=2π[tan−1z]−11
=> I=2π[tan−11−tan−1(−1)]
=> I=2π(4π−4−π)
=> I=2π(4π+4π)=2π.2π=4π2
Comments