Let us determine whether the following series converge, converge absolutely, converge conditionally, or diverge.
1) ∑ k = 1 ∞ 3 k k 2 2 k \displaystyle\sum_{k=1}^{\infty}\frac{3^k}{k^22^k} k = 1 ∑ ∞ k 2 2 k 3 k
Let us use D'Alembert's Ratio Test.
Since lim n → ∞ ( 3 k + 1 ( k + 1 ) 2 2 k + 1 : 3 k k 2 2 k ) = lim n → ∞ 3 k 2 2 ( k + 1 ) 2 = lim n → ∞ 3 k 2 2 ( k 2 + 2 k + 1 ) = 3 2 > 1 , \lim\limits_{n\to\infty}(\frac{3^{k+1}}{(k+1)^22^{k+1}}:\frac{3^k}{k^22^k})
=\lim\limits_{n\to\infty}\frac{3k^2}{2(k+1)^2}=\lim\limits_{n\to\infty}\frac{3k^2}{2(k^2+2k+1)}=\frac{3}2>1, n → ∞ lim ( ( k + 1 ) 2 2 k + 1 3 k + 1 : k 2 2 k 3 k ) = n → ∞ lim 2 ( k + 1 ) 2 3 k 2 = n → ∞ lim 2 ( k 2 + 2 k + 1 ) 3 k 2 = 2 3 > 1 ,
we conclude that this series diverge.
2) Since
∑ k = 1 ∞ ( − 1 ) k + 1 k + 1 − k = ∑ k = 1 ∞ ( − 1 ) k + 1 ( k + 1 + k ) ( k + 1 − k ) ( k + 1 − k ) = ∑ k = 1 ∞ ( − 1 ) k + 1 ( k + 1 + k ) ( ( k + 1 ) − k ) = ∑ k = 1 ∞ ( − 1 ) k + 1 ( k + 1 + k ) , \displaystyle\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{ \sqrt{k+1} -\sqrt{k}}
=\displaystyle\sum_{k=1}^{\infty}\frac{(-1)^{k+1}(\sqrt{k+1} +\sqrt{k})}{ (\sqrt{k+1} -\sqrt{k})(\sqrt{k+1} -\sqrt{k})}
=\displaystyle\sum_{k=1}^{\infty}\frac{(-1)^{k+1}(\sqrt{k+1} +\sqrt{k})}{ ((k+1)-k)}
=\displaystyle\sum_{k=1}^{\infty}(-1)^{k+1}(\sqrt{k+1} +\sqrt{k}), k = 1 ∑ ∞ k + 1 − k ( − 1 ) k + 1 = k = 1 ∑ ∞ ( k + 1 − k ) ( k + 1 − k ) ( − 1 ) k + 1 ( k + 1 + k ) = k = 1 ∑ ∞ (( k + 1 ) − k ) ( − 1 ) k + 1 ( k + 1 + k ) = k = 1 ∑ ∞ ( − 1 ) k + 1 ( k + 1 + k ) ,
and lim k → ∞ ( k + 1 + k ) = ∞ , \lim\limits_{k\to\infty}(\sqrt{k+1} +\sqrt{k})=\infty, k → ∞ lim ( k + 1 + k ) = ∞ ,
we conclude that the necessary condition of covergence is not met, and hence this series is divergent.
3) ∑ k = 1 ∞ ( − 1 ) k + 1 ( k + 1 − k ) \displaystyle\sum_{k=1}^{\infty}(-1)^{k+1}( \sqrt{k+1} -\sqrt{k}) k = 1 ∑ ∞ ( − 1 ) k + 1 ( k + 1 − k )
Consider the series ∑ k = 1 ∞ ∣ ( − 1 ) k + 1 ( k + 1 − k ) ∣ = ∑ k = 1 ∞ ( k + 1 − k ) . \displaystyle\sum_{k=1}^{\infty}|(-1)^{k+1}( \sqrt{k+1} -\sqrt{k})|=\displaystyle\sum_{k=1}^{\infty}(\sqrt{k+1} -\sqrt{k}). k = 1 ∑ ∞ ∣ ( − 1 ) k + 1 ( k + 1 − k ) ∣ = k = 1 ∑ ∞ ( k + 1 − k ) .
Since A n = ( 2 − 1 ) + ( 3 − 2 ) + ( 4 − 3 ) + … + ( n + 1 − n ) = n + 1 − 1 , A_n=(\sqrt{2} -1)+(\sqrt{3} -\sqrt{2})+(\sqrt{4} -\sqrt{3})+\ldots +(\sqrt{n+1} -\sqrt{n})=\sqrt{n+1} -1, A n = ( 2 − 1 ) + ( 3 − 2 ) + ( 4 − 3 ) + … + ( n + 1 − n ) = n + 1 − 1 ,
and lim n → ∞ A n = lim n → ∞ ( n + 1 − 1 ) = ∞ , \lim\limits_{n\to\infty}A_n=\lim\limits_{n\to\infty}(\sqrt{n+1} -1)=\infty, n → ∞ lim A n = n → ∞ lim ( n + 1 − 1 ) = ∞ , we conclude that the series ∑ k = 1 ∞ ( − 1 ) k + 1 ( k + 1 − k ) \displaystyle\sum_{k=1}^{\infty}(-1)^{k+1}( \sqrt{k+1} -\sqrt{k}) k = 1 ∑ ∞ ( − 1 ) k + 1 ( k + 1 − k ) diverge absolutely.
Comments