the equation of a curve is given as f(x)= sqrt 2x-1, find the equation of the tangent line to the graph of f(x) at x=5
y=2x−1y=\sqrt{2x-1}y=2x−1
y(5)=10−1=3y(5)=\sqrt{10-1}=3y(5)=10−1=3
y′=12x−1y'=\frac{1}{\sqrt{2x-1}}y′=2x−11
y′(5)=110−1=13y'(5)=\frac{1}{\sqrt{10-1}}=\frac{1}{3}y′(5)=10−11=31
Tangent line: y−3=13(x−5)y-3=\frac{1}{3}(x-5)y−3=31(x−5) or y=13x+43y=\frac{1}{3}x+\frac{4}{3}y=31x+34
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment