Question #262853

Show that ∫10 (sin(1/x))/xn š‘‘š‘„ ; š‘„ > 0 convergence absolutely, if š‘› < 1.


1
Expert's answer
2021-11-11T13:07:34-0500

u=1/x,du=āˆ’dx/x2u=1/x, du=-dx/x^2


∫01(sin(1/x))/xnš‘‘š‘„=∫0āˆž(sin(u))unāˆ’2š‘‘u∫^1_0 (sin(1/x))/x^n š‘‘š‘„=∫^{\infin}_0 (sin(u))u^{n-2} š‘‘u


since n < 1:


∣(sin(u))unāˆ’2āˆ£ā‰¤1/u2|(sin(u))u^{n-2}|\le 1/u^2


since series āˆ‘1/u2\sum 1/u^2 converge, then āˆ‘(sin(u))unāˆ’2\sum (sin(u))u^{n-2} converge absolutely.


So,


∫01(sin(1/x))/xnš‘‘š‘„=∫0āˆž(sin(u))unāˆ’2š‘‘u∫^1_0 (sin(1/x))/x^n š‘‘š‘„=∫^{\infin}_0 (sin(u))u^{n-2} š‘‘u convergences absolutely, if š‘› < 1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS