Question #262851
  1. Calculate the turning points of the function y=sin3t using differential calculus
  2. Show which are maxima, minima or points of inflexion using the second derivative
1
Expert's answer
2021-11-09T00:01:19-0500

1. y=sin(3t)y=\sin(3t)

Domain: (,)(-\infin, \infin)

Find the first derivative


y=(sin(3t))=3cos(3t)y'=(\sin(3t))'=3\cos(3t)

Find the critical number(s)


y=0=>3cos(3t)=0y'=0=>3\cos(3t)=0

3t=π2+πn,nZ3t=\dfrac{\pi}{2}+\pi n, n\in \Z

t=π6+πn3,nZt=\dfrac{\pi}{6}+\dfrac{\pi n}{3}, n\in \Z

y(π6+2πm3,mZ)=1y(\dfrac{\pi}{6}+\dfrac{2\pi m}{3}, m\in \Z)=1

y(π2+2πk3,kZ)=1y(\dfrac{\pi}{2}+\dfrac{2\pi k}{3}, k\in \Z)=-1

The turning points are

(π6+2πm3,1),(π2+2πk3,1),m,kZ\big(\dfrac{\pi}{6}+\dfrac{2\pi m}{3}, 1\big), \big(\dfrac{\pi}{2}+\dfrac{2\pi k}{3},-1\big), m,k\in \Z

2.

Find the second derivative


y=(3cos(3t))=9sin(3t)y''=(3\cos(3t))'=-9\sin(3t)

y(π6+2πm3)=9<0y''(\dfrac{\pi}{6}+\dfrac{2\pi m}{3})=-9<0

y(π2+2πm3)=9>0y''(\dfrac{\pi}{2}+\dfrac{2\pi m}{3})=9>0

The points (π6+2πm3,1),mZ\big(\dfrac{\pi}{6}+\dfrac{2\pi m}{3}, 1\big), m\in \Z are maxima.


The points (π2+2πk3,1),kZ\big(\dfrac{\pi}{2}+\dfrac{2\pi k}{3}, 1\big), k\in \Z are minima.



y=0=>9sin(3t)=0y''=0=>-9\sin(3t)=0

3t=πl,lZ3t=\pi l, l\in \Z

t=πl3,lZt=\dfrac{\pi l}{3}, l\in \Z

y(πl3)=0,lZy(\dfrac{\pi l}{3})=0, l\in \Z

The points (πl3,0),lZ\big(\dfrac{\pi l}{3}, 0\big), l\in \Z are points of inflection.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS