1. "y=\\sin(3t)"
Domain: "(-\\infin, \\infin)"
Find the first derivative
Find the critical number(s)
"3t=\\dfrac{\\pi}{2}+\\pi n, n\\in \\Z"
"t=\\dfrac{\\pi}{6}+\\dfrac{\\pi n}{3}, n\\in \\Z"
"y(\\dfrac{\\pi}{6}+\\dfrac{2\\pi m}{3}, m\\in \\Z)=1"
"y(\\dfrac{\\pi}{2}+\\dfrac{2\\pi k}{3}, k\\in \\Z)=-1"
The turning points are
"\\big(\\dfrac{\\pi}{6}+\\dfrac{2\\pi m}{3}, 1\\big), \\big(\\dfrac{\\pi}{2}+\\dfrac{2\\pi k}{3},-1\\big), m,k\\in \\Z"
2.
Find the second derivative
"y''(\\dfrac{\\pi}{6}+\\dfrac{2\\pi m}{3})=-9<0"
"y''(\\dfrac{\\pi}{2}+\\dfrac{2\\pi m}{3})=9>0"
The points "\\big(\\dfrac{\\pi}{6}+\\dfrac{2\\pi m}{3}, 1\\big), m\\in \\Z" are maxima.
The points "\\big(\\dfrac{\\pi}{2}+\\dfrac{2\\pi k}{3}, 1\\big), k\\in \\Z" are minima.
"3t=\\pi l, l\\in \\Z"
"t=\\dfrac{\\pi l}{3}, l\\in \\Z"
"y(\\dfrac{\\pi l}{3})=0, l\\in \\Z"
The points "\\big(\\dfrac{\\pi l}{3}, 0\\big), l\\in \\Z" are points of inflection.
Comments
Leave a comment