1. y=sin(3t)
Domain: (−∞,∞)
Find the first derivative
y′=(sin(3t))′=3cos(3t) Find the critical number(s)
y′=0=>3cos(3t)=0
3t=2π+πn,n∈Z
t=6π+3πn,n∈Z
y(6π+32πm,m∈Z)=1
y(2π+32πk,k∈Z)=−1 The turning points are
(6π+32πm,1),(2π+32πk,−1),m,k∈Z
2.
Find the second derivative
y′′=(3cos(3t))′=−9sin(3t)
y′′(6π+32πm)=−9<0
y′′(2π+32πm)=9>0 The points (6π+32πm,1),m∈Z are maxima.
The points (2π+32πk,1),k∈Z are minima.
y′′=0=>−9sin(3t)=0
3t=πl,l∈Z
t=3πl,l∈Z
y(3πl)=0,l∈Z The points (3πl,0),l∈Z are points of inflection.
Comments