x2−2xy+y2−4y+16=0........(i)
take differentiation
2udu−2udy−2ydu+2ydy−4dy=0(2u−2y)du+(2y−2u−4)dy=0(2u−2y)du=−(2y−2u−4)dy(2u−2y)du=(2u−2y+4)dy
horizontal lines dudy=2x−2y+42x−2y=x−y+2x−y
dxdy=0x−y+2x−yx=y
for vertical tangent =dxdy =underdefined
or
x−y+2=0y=x+2
now solve the points on the parabola
substitute
x=y
in equation 1
x2−2x+x2−4x+16=0−4x+16=0x=416x=4y=4
horizontal(4,4)
for vertical tangent lines y=x+2
put in equation 1
x2−2x(x+2)+(x+2)2−4(x+2)+16=0−4x=12=0−4x=−12x=3y=3+2=5
vertical tangent lines(3,5)
the parabola has horizontal tangent lines at (4,4)
the parabola has vertical tangent lines at (3,5)
Comments
Leave a comment