Solution:
We know that
i 1 / 3 = cos ( 4 k + 1 ) π 6 + i sin ( 4 k + 1 ) π 6 ; k = 0 , 1 , 2 i^{1/3}=\cos(4k+1)\dfrac{\pi}6+i\sin(4k+1)\dfrac{\pi}6; k=0,1,2 i 1/3 = cos ( 4 k + 1 ) 6 π + i sin ( 4 k + 1 ) 6 π ; k = 0 , 1 , 2
So, for k=0
i 1 / 3 = cos π 6 + i sin π 6 = 3 2 + i 2 i^{1/3}=\cos\dfrac{\pi}6+i\sin \dfrac{\pi}6
\\=\dfrac{\sqrt3}2+\dfrac i2 i 1/3 = cos 6 π + i sin 6 π = 2 3 + 2 i
For k=1
i 1 / 3 = cos 5 π 6 + i sin 5 π 6 = − cos π 6 + i sin π 6 = − 3 2 + i 2 i^{1/3}=\cos\dfrac{5\pi}6+i\sin \dfrac{5\pi}6
\\=-\cos\dfrac{\pi}6+i\sin \dfrac{\pi}6
\\=-\dfrac{\sqrt3}2+\dfrac i2 i 1/3 = cos 6 5 π + i sin 6 5 π = − cos 6 π + i sin 6 π = − 2 3 + 2 i
For k=2
i 1 / 3 = cos 9 π 6 + i sin 9 π 6 = cos 3 π 2 + i sin 3 π 2 = − cos π 2 + i ( − sin π 2 ) = − i i^{1/3}=\cos\dfrac{9\pi}6+i\sin \dfrac{9\pi}6
\\=\cos\dfrac{3\pi}2+i\sin \dfrac{3\pi}2
\\=-\cos\dfrac{\pi}2+i(-\sin \dfrac{\pi}2)
\\=-i i 1/3 = cos 6 9 π + i sin 6 9 π = cos 2 3 π + i sin 2 3 π = − cos 2 π + i ( − sin 2 π ) = − i
Given ones are: z1= cosπ/2 + i sinπ/2 , z2= cosπ/6 +i sinπ/6 and z3= cos5π/6 + i sin5π/6 .
z1 is incorrect, rest are correct.
So, it is false.
Comments