all the cube root of iota (i) in a complex number (C) are z1= cosπ/2 + i sinπ/2 , z2= cosπ/6 +i sinπ/6 and z3= cos5π/6 + i sin5π/6 .
Verify if the statement is true or false. Give reason for your answer in the form of a short proof or a counterexample.
Solution:
We know that
"i^{1\/3}=\\cos(4k+1)\\dfrac{\\pi}6+i\\sin(4k+1)\\dfrac{\\pi}6; k=0,1,2"
So, for k=0
"i^{1\/3}=\\cos\\dfrac{\\pi}6+i\\sin \\dfrac{\\pi}6\n\\\\=\\dfrac{\\sqrt3}2+\\dfrac i2"
For k=1
"i^{1\/3}=\\cos\\dfrac{5\\pi}6+i\\sin \\dfrac{5\\pi}6\n\\\\=-\\cos\\dfrac{\\pi}6+i\\sin \\dfrac{\\pi}6\n\\\\=-\\dfrac{\\sqrt3}2+\\dfrac i2"
For k=2
"i^{1\/3}=\\cos\\dfrac{9\\pi}6+i\\sin \\dfrac{9\\pi}6\n\\\\=\\cos\\dfrac{3\\pi}2+i\\sin \\dfrac{3\\pi}2\n\\\\=-\\cos\\dfrac{\\pi}2+i(-\\sin \\dfrac{\\pi}2) \n\\\\=-i"
Given ones are: z1= cosπ/2 + i sinπ/2 , z2= cosπ/6 +i sinπ/6 and z3= cos5π/6 + i sin5π/6 .
z1 is incorrect, rest are correct.
So, it is false.
Comments
Leave a comment