Consider: z=f(x,y), where x=eu+e−v,y=e−u−ev
Require to find: ∂(x,y)∂(u,v)
Recollect the following: ∂(x,y)∂(u,v)=∂(u,v)∂(x,y)1 and ∂(u,v)∂(x,y)=∣∣∂u∂x∂u∂y∂v∂x∂v∂y∣∣
Now x=eu+e−v,y=e−u−ev⇒∂(u,v)∂(x,y)=∣∣eu−e−u−e−v−ev∣∣
⇒∂(u,v)∂(x,y)=−eu+v−e−u−v
Using the above, we have
∂(x,y)∂(u,v)=∂(u,v)∂(x,y)1⇒∂(x,y)∂(u,v)=−eu+v−e−u−v1
Therefore,
∂(x,y)∂(u,v)=−eu+v−e−u−v1
Comments
Leave a comment