Consider: z = f ( x , y ) , z=f(x,y), z = f ( x , y ) , where x = e u + e − v , y = e − u − e v x=e^u+e^{-v},y=e^{-u}-e^v x = e u + e − v , y = e − u − e v
Require to find: ∂ ( u , v ) ∂ ( x , y ) \frac{\partial (u,v)}{\partial (x,y)} ∂ ( x , y ) ∂ ( u , v )
Recollect the following: ∂ ( u , v ) ∂ ( x , y ) = 1 ∂ ( x , y ) ∂ ( u , v ) \frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{\frac{\partial (x,y)}{\partial (u,v)}} ∂ ( x , y ) ∂ ( u , v ) = ∂ ( u , v ) ∂ ( x , y ) 1 and ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ \frac{\partial (x,y)}{\partial (u,v)}=\begin{vmatrix}
\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u}& \frac{\partial y}{\partial v}
\end{vmatrix} ∂ ( u , v ) ∂ ( x , y ) = ∣ ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ ∣
Now x = e u + e − v , y = e − u − e v ⇒ ∂ ( x , y ) ∂ ( u , v ) = ∣ e u − e − v − e − u − e v ∣ x=e^u+e^{-v},y=e^{-u}-e^v\Rightarrow \frac{\partial (x,y)}{\partial (u,v)}=\begin{vmatrix}
e^u & -e^{-v}\\
-e^{-u}& -e^v
\end{vmatrix} x = e u + e − v , y = e − u − e v ⇒ ∂ ( u , v ) ∂ ( x , y ) = ∣ ∣ e u − e − u − e − v − e v ∣ ∣
⇒ ∂ ( x , y ) ∂ ( u , v ) = − e u + v − e − u − v \Rightarrow \frac{\partial (x,y)}{\partial (u,v)}=-e^{u+v}-e^{-u-v} ⇒ ∂ ( u , v ) ∂ ( x , y ) = − e u + v − e − u − v
Using the above, we have
∂ ( u , v ) ∂ ( x , y ) = 1 ∂ ( x , y ) ∂ ( u , v ) ⇒ ∂ ( u , v ) ∂ ( x , y ) = 1 − e u + v − e − u − v \frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{\frac{\partial (x,y)}{\partial (u,v)}}\Rightarrow \frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{-e^{u+v}-e^{-u-v}} ∂ ( x , y ) ∂ ( u , v ) = ∂ ( u , v ) ∂ ( x , y ) 1 ⇒ ∂ ( x , y ) ∂ ( u , v ) = − e u + v − e − u − v 1
Therefore,
∂ ( u , v ) ∂ ( x , y ) = 1 − e u + v − e − u − v \frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{-e^{u+v}-e^{-u-v}} ∂ ( x , y ) ∂ ( u , v ) = − e u + v − e − u − v 1
Comments