Answer to Question #261656 in Calculus for haemha

Question #261656

 If z = f(x, y), where x = eu + e−v , y = e−u − ev , then find ∂(u,v)/∂(x,y) .


1
Expert's answer
2021-11-08T16:29:42-0500

Consider: z=f(x,y),z=f(x,y), where x=eu+ev,y=euevx=e^u+e^{-v},y=e^{-u}-e^v

Require to find: (u,v)(x,y)\frac{\partial (u,v)}{\partial (x,y)}


Recollect the following: (u,v)(x,y)=1(x,y)(u,v)\frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{\frac{\partial (x,y)}{\partial (u,v)}} and (x,y)(u,v)=xuxvyuyv\frac{\partial (x,y)}{\partial (u,v)}=\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u}& \frac{\partial y}{\partial v} \end{vmatrix}


Now x=eu+ev,y=euev(x,y)(u,v)=eueveuevx=e^u+e^{-v},y=e^{-u}-e^v\Rightarrow \frac{\partial (x,y)}{\partial (u,v)}=\begin{vmatrix} e^u & -e^{-v}\\ -e^{-u}& -e^v \end{vmatrix}

(x,y)(u,v)=eu+veuv\Rightarrow \frac{\partial (x,y)}{\partial (u,v)}=-e^{u+v}-e^{-u-v}


Using the above, we have

(u,v)(x,y)=1(x,y)(u,v)(u,v)(x,y)=1eu+veuv\frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{\frac{\partial (x,y)}{\partial (u,v)}}\Rightarrow \frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{-e^{u+v}-e^{-u-v}}


Therefore,

(u,v)(x,y)=1eu+veuv\frac{\partial (u,v)}{\partial (x,y)}=\frac{1}{-e^{u+v}-e^{-u-v}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment