If z = f(x, y), where x = eu + e−v , y = e−u − ev , then find ∂(u,v)/∂(x,y) .
Consider: "z=f(x,y)," where "x=e^u+e^{-v},y=e^{-u}-e^v"
Require to find: "\\frac{\\partial (u,v)}{\\partial (x,y)}"
Recollect the following: "\\frac{\\partial (u,v)}{\\partial (x,y)}=\\frac{1}{\\frac{\\partial (x,y)}{\\partial (u,v)}}" and "\\frac{\\partial (x,y)}{\\partial (u,v)}=\\begin{vmatrix}\n \\frac{\\partial x}{\\partial u}&\\frac{\\partial x}{\\partial v} \\\\ \n \\frac{\\partial y}{\\partial u}& \\frac{\\partial y}{\\partial v}\n\\end{vmatrix}"
Now "x=e^u+e^{-v},y=e^{-u}-e^v\\Rightarrow \\frac{\\partial (x,y)}{\\partial (u,v)}=\\begin{vmatrix}\ne^u & -e^{-v}\\\\ \n -e^{-u}& -e^v\n\\end{vmatrix}"
"\\Rightarrow \\frac{\\partial (x,y)}{\\partial (u,v)}=-e^{u+v}-e^{-u-v}"
Using the above, we have
"\\frac{\\partial (u,v)}{\\partial (x,y)}=\\frac{1}{\\frac{\\partial (x,y)}{\\partial (u,v)}}\\Rightarrow \\frac{\\partial (u,v)}{\\partial (x,y)}=\\frac{1}{-e^{u+v}-e^{-u-v}}"
Therefore,
"\\frac{\\partial (u,v)}{\\partial (x,y)}=\\frac{1}{-e^{u+v}-e^{-u-v}}"
Comments
Leave a comment