Discuss the continuity of f(x, y) = (x^4)(y^4)/(x2+y 2)^3 if (x, y) not equal to (0,0), 0 if (x, y) = (0,0) at(0, 0)
Let "x=r\\cos \\theta, y=r\\sin \\theta." Then
"=r^2\\cos^4\\theta\\sin^4\\theta"
"\\lim\\limits_{(x,y)\\to(0,0)}\\dfrac{x^4y^4}{(x^2+y^2)^3}=\\lim\\limits_{r\\to0}(r^2\\cos^4\\theta\\sin^4\\theta)=0"
We have that
Therefore the function
is continuous at "(0,0)."
Comments
Leave a comment