Let x = r cos θ , y = r sin θ . x=r\cos \theta, y=r\sin \theta. x = r cos θ , y = r sin θ . Then
x 4 y 4 ( x 2 + y 2 ) 3 = ( r 4 cos 4 θ ) ( r 4 sin 4 θ ) ( r 2 cos 2 θ + r 2 cos 2 θ ) 3 = \dfrac{x^4y^4}{(x^2+y^2)^3}=\dfrac{(r^4\cos^4\theta) (r^4\sin^4\theta)}{(r^2\cos^2\theta+r^2\cos^2\theta)^3}= ( x 2 + y 2 ) 3 x 4 y 4 = ( r 2 cos 2 θ + r 2 cos 2 θ ) 3 ( r 4 cos 4 θ ) ( r 4 sin 4 θ ) =
= r 2 cos 4 θ sin 4 θ =r^2\cos^4\theta\sin^4\theta = r 2 cos 4 θ sin 4 θ
lim ( x , y ) → ( 0 , 0 ) x 4 y 4 ( x 2 + y 2 ) 3 = lim r → 0 ( r 2 cos 4 θ sin 4 θ ) = 0 \lim\limits_{(x,y)\to(0,0)}\dfrac{x^4y^4}{(x^2+y^2)^3}=\lim\limits_{r\to0}(r^2\cos^4\theta\sin^4\theta)=0 ( x , y ) → ( 0 , 0 ) lim ( x 2 + y 2 ) 3 x 4 y 4 = r → 0 lim ( r 2 cos 4 θ sin 4 θ ) = 0 We have that
lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 = f ( 0 , 0 ) \lim\limits_{(x,y)\to(0,0)}f(x,y)=0=f(0,0) ( x , y ) → ( 0 , 0 ) lim f ( x , y ) = 0 = f ( 0 , 0 ) Therefore the function
f ( x , y ) = { x 4 y 4 ( x 2 + y 2 ) 3 if ( x , y ) ≠ ( 0 , 0 ) 0 if ( x , y ) = ( 0 , 0 ) f(x, y)= \begin{cases}
\dfrac{x^4y^4}{(x^2+y^2)^3} &\text{if } (x,y)\not=(0,0) \\
0 &\text{if } (x,y)=(0,0)
\end{cases} f ( x , y ) = ⎩ ⎨ ⎧ ( x 2 + y 2 ) 3 x 4 y 4 0 if ( x , y ) = ( 0 , 0 ) if ( x , y ) = ( 0 , 0 ) is continuous at ( 0 , 0 ) . (0,0). ( 0 , 0 ) .
Comments