Let x=rcosθ,y=rsinθ. Then
(x2+y2)3x4y4=(r2cos2θ+r2cos2θ)3(r4cos4θ)(r4sin4θ)=
=r2cos4θsin4θ
(x,y)→(0,0)lim(x2+y2)3x4y4=r→0lim(r2cos4θsin4θ)=0 We have that
(x,y)→(0,0)limf(x,y)=0=f(0,0) Therefore the function
f(x,y)=⎩⎨⎧(x2+y2)3x4y40if (x,y)=(0,0)if (x,y)=(0,0) is continuous at (0,0).
Comments