Question #261652

 Discuss the continuity of f(x, y) = (x^4)(y^4)/(x2+y 2)^3 if (x, y) not equal to (0,0), 0 if (x, y) = (0,0) at(0, 0) 


1
Expert's answer
2021-11-08T08:19:13-0500

Let x=rcosθ,y=rsinθ.x=r\cos \theta, y=r\sin \theta. Then


x4y4(x2+y2)3=(r4cos4θ)(r4sin4θ)(r2cos2θ+r2cos2θ)3=\dfrac{x^4y^4}{(x^2+y^2)^3}=\dfrac{(r^4\cos^4\theta) (r^4\sin^4\theta)}{(r^2\cos^2\theta+r^2\cos^2\theta)^3}=

=r2cos4θsin4θ=r^2\cos^4\theta\sin^4\theta

lim(x,y)(0,0)x4y4(x2+y2)3=limr0(r2cos4θsin4θ)=0\lim\limits_{(x,y)\to(0,0)}\dfrac{x^4y^4}{(x^2+y^2)^3}=\lim\limits_{r\to0}(r^2\cos^4\theta\sin^4\theta)=0

We have that


lim(x,y)(0,0)f(x,y)=0=f(0,0)\lim\limits_{(x,y)\to(0,0)}f(x,y)=0=f(0,0)

Therefore the function


f(x,y)={x4y4(x2+y2)3if (x,y)(0,0)0if (x,y)=(0,0)f(x, y)= \begin{cases} \dfrac{x^4y^4}{(x^2+y^2)^3} &\text{if } (x,y)\not=(0,0) \\ 0 &\text{if } (x,y)=(0,0) \end{cases}

is continuous at (0,0).(0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS