Using Epsilon and Delta definition, show that limit of x approches to 2 for 3x-5 is equal to 1.
Using Epsilon and Delta definition, let us show that "\\lim\\limits_{x\\to 2}3x-5 =1."
Let "\\varepsilon>0" be arbitrary. Put "\\delta=\\frac{1}3\\varepsilon." Then for any "\\varepsilon>0" there exists "\\delta>0" such that if "|x-2|<\\delta" then "|(3x-5)-1|=|3x-6|=3|x-2|<3\\delta=3\\frac{1}3\\varepsilon=\\varepsilon." We conclude that "\\lim\\limits_{x\\to 2}3x-5 =1."
Comments
Leave a comment