Using Epsilon and Delta definition, show that limit of x approches to 2 for 3x-5 is equal to 1.
Using Epsilon and Delta definition, let us show that limx→23x−5=1.\lim\limits_{x\to 2}3x-5 =1.x→2lim3x−5=1.
Let ε>0\varepsilon>0ε>0 be arbitrary. Put δ=13ε.\delta=\frac{1}3\varepsilon.δ=31ε. Then for any ε>0\varepsilon>0ε>0 there exists δ>0\delta>0δ>0 such that if ∣x−2∣<δ|x-2|<\delta∣x−2∣<δ then ∣(3x−5)−1∣=∣3x−6∣=3∣x−2∣<3δ=313ε=ε.|(3x-5)-1|=|3x-6|=3|x-2|<3\delta=3\frac{1}3\varepsilon=\varepsilon.∣(3x−5)−1∣=∣3x−6∣=3∣x−2∣<3δ=331ε=ε. We conclude that limx→23x−5=1.\lim\limits_{x\to 2}3x-5 =1.x→2lim3x−5=1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments