Find the volume generated by revolving the given region about the given axis.
(a) The region bounded by y = x4 , x = 1 and y = 0 about Y axis.
(b) The triangle with vertices (1, 1),(1, 2)(2, 2) about X axis.
(c) The region in the first quadrant bounded by x = y − y3 , x = 1 and y = 1 about X axis.
(a)
"A_2(y)=\\pi(x)^2=\\pi"
"V=\\displaystyle\\int_{0}^{1}(\\pi-\\pi\\sqrt{y})dy=\\pi[y-\\dfrac{2}{3}y^{3\/2}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{\\pi}{3} (cubic\\ units)"
(b)
"=\\pi(8-\\dfrac{8}{3}-(4-\\dfrac{1}{3})=\\dfrac{5}{3}(cubic\\ units)"
(c)
"V=\\displaystyle\\int_{0}^{1}2\\pi y(1-(y \u2212 y^3))dy=2\\pi[\\dfrac{y^2}{2}-\\dfrac{y^3}{3}+\\dfrac{y^4}{4}]\\begin{matrix}\n1\\\\\n0\n\\end{matrix}"
"=\\dfrac{5\\pi}{12}(cubic\\ units)"
Comments
Leave a comment