Question #262002

Find the maximum and minimum values of f(x, y, z) = xyz subject to the constraint 4x2+9y+z2 = 4 Assume that y ≥ 0. Why is this assumption required?


1
Expert's answer
2021-11-09T16:28:40-0500

First we define a new a function F(x,y)F(x,y,z,λ)=xyz+λ(4x2+9y+z2)Next, we differentiate F with respect to x,y and z and equate themto 0Fx(x,y,z,λ)=yz+8xλ=0(1)Fy(x,y,z,λ)=xz+9λ=0(2)Fz(x,y,z,λ)=xy+2zλ=0(3)Using elimination method, we obtain z=2x,y=89x2Substituting in the given constraint, we have thatx=±12,y=±29,±1f(12,29,1)=19,f(12,29,1)=19Therefore, 19 is an absolute maximum at point (12,29,1) andpoint 19 is an absolute maximum at point (12,29,1)\displaystyle \text{First we define a new a function F(x,y)}\\ F(x,y,z,\lambda) = xyz + \lambda(4x^2+9y+z^2)\\ \text{Next, we differentiate F with respect to x,y and z and equate them}\\ \text{to 0}\\ F_x(x,y,z,\lambda) = yz + 8x\lambda=0 \qquad -(1)\\ F_y(x,y,z,\lambda) = xz + 9\lambda=0 \qquad-(2)\\ F_z(x,y,z,\lambda) = xy+ 2z\lambda=0 \qquad -(3)\\ \text{Using elimination method, we obtain }\\ z=2x, y = \frac{8}{9}x^2\\ \text{Substituting in the given constraint, we have that}\\ x=\pm \frac{1}{2}, y= \pm \frac{2}{9}, \pm 1\\ f(\frac{1}{2},\frac{2}{9},1)=\frac{1}{9}, f(-\frac{1}{2},-\frac{2}{9},-1)=-\frac{1}{9}\\\text{Therefore, $\frac{1}{9}$ is an absolute maximum at point ($\frac{1}{2},\frac{2}{9},1)$ and}\\ \text{point $-\frac{1}{9}$ is an absolute maximum at point ($-\frac{1}{2},-\frac{2}{9},-1)$}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS