Question #261906

Adiabatic law for the expansion of air is


PV^1.4=C,P(pressure) in lb/in^2 ,V(volume)in cubic inches, and C(constant). At a specific instant, the


pressure is 40 lb/in^2 and is increasing at the rate of 8 lb/in^2each second. If


C=5/16


, what is the rate of change of the volume at this instant?

1
Expert's answer
2021-11-09T12:47:47-0500

At pv1.4=cAt\space pv^{1.4}=c

At p=40lbin2,dpdt=8dpin2secAt\space p=40\frac{lb}{in^2},\frac{dp}{dt}=8\frac{dp}{in^2 sec}

c=516v1.4=cpc=\frac{5}{16}\\v^{1.4}=\frac{c}{p}

v1.4=51640=1128v^{1.4}=\frac{\frac{5}{16}}{40}=\frac{1}{128}

V1410=127    v75=27    v=(27)×57=25[v=[125]=132V^{\frac{14}{10}}=\frac{1}{27}\implies v^{\frac{7}{5}}=2^{-7}\\\implies v=(2^{-7})\times\frac{5}{7}=2^{-5}[v=[\frac{1}{2^5}]=\frac{1}{32}

Now

ddt(v1.4)=ddt(cp)=cddt(p1)\frac{d}{dt}(v^{1.4})=\frac{d}{dt}(\frac{c}{p})=c\frac{d}{dt}(p^{-1})

1.4v1.41(dvdt)=c[1p11]dpdt1.4v^{1.4-1}(\frac{dv}{dt})=c[-1p^{-1-1}]\frac{dp}{dt}

1.4v0.4(dvdt)=cp2(dpdt)1.4v^{0.4}(\frac{dv}{dt})=\frac{-c}{p^2}(\frac{dp}{dt})

put v=132=125 and c=516, p=40,dpdt=8v=\frac{1}{32}=\frac{1}{2^5}\space and \space c=\frac{5}{16},\space p=40, \frac{dp}{dt}=8

1.4(125)0.4dvdt=516(40)2×81.4(\frac{1}{25})^{0.4}\frac{dv}{dt}=\frac{-5}{16(40)^2}\times 8

1.425×0.4dvdt=5×816×40×40\frac{1.4}2^{5\times 0.4}\frac{dv}{dt}=\frac{-5\times8}{16\times40\times40}

1.44dvdt=116×40\frac{1.4}{4}\frac{dv}{dt}=\frac{-1}{16\times 40}

dvdt=116×14=1224\frac{dv}{dt}=\frac{-1}{16\times14}=\frac{-1}{224}

So rate of change of volume at this instant =1224 in3sec=\frac{-1}{224}\space \frac{in^3}{sec}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS