f(x,y)=sin(πx)tan(πy)+x2y
x0=0.96, y0=0.26
a)
Linear approximation:
L(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)
fx(x,y)=πcos(πx)tan(πy)+2xy
fy(x,y)=cos2(πy)πsin(πx)+x2
f(x0,y0)=sin(0.96π)tan(0.26π)+0.962⋅0.26=0.37
fx(x0,y0)=πcos(0.96π)tan(0.26π)+2⋅0.96⋅0.26=−2.82
fy(x0,y0)=cos2(0.26π)πsin(0.96π)+0.962=1.77
L(x,y)=0.37−2.82⋅(x−0.96)+1.77⋅(y−0.26)
L(x,y)=2.62−2.82x+1.77y
Quadratic approximation:
Q(x,y)=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)+
+21fxx(x0,y0)(x−x0)2+fxy(x0,y0)(x−x0)(y−y0)+
+21fyy(x0,y0)(y−y0)2
fxx(x,y)=−π2sin(πx)tan(πy)+2y
fyy(x,y)=cos3(πy)2π2sin(πx)sin(πy)
fxy(x,y)=cos2(πy)π2cos(πx)+2x
Comments