Question #240071

a) Find the linear and quadratic approximations of sin(0.96π) tan(0.26π) + (0.96)2(0.26)

b) Compare these approximations with the actual value.


1
Expert's answer
2021-09-23T14:15:14-0400

f(x,y)=sin(πx)tan(πy)+x2yf(x,y)=sin(\pi x)tan(\pi y)+x^2y

x0=0.96, y0=0.26x_0=0.96,\ y_0=0.26


a)

Linear approximation:

L(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)L(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)

fx(x,y)=πcos(πx)tan(πy)+2xyf_x(x,y)=\pi cos(\pi x)tan(\pi y)+2xy

fy(x,y)=πsin(πx)cos2(πy)+x2f_y(x,y)=\frac{\pi sin(\pi x)}{cos^2(\pi y)} +x^2

f(x0,y0)=sin(0.96π)tan(0.26π)+0.9620.26=0.37f(x_0,y_0)=sin(0.96\pi )tan(0.26\pi )+0.96^2\cdot 0.26=0.37

fx(x0,y0)=πcos(0.96π)tan(0.26π)+20.960.26=2.82f_x(x_0,y_0)=\pi cos(0.96\pi )tan(0.26\pi )+2\cdot 0.96\cdot 0.26=-2.82

fy(x0,y0)=πsin(0.96π)cos2(0.26π)+0.962=1.77f_y(x_0,y_0)=\frac{\pi sin(0.96\pi )}{cos^2(0.26\pi )} +0.96^2=1.77

L(x,y)=0.372.82(x0.96)+1.77(y0.26)L(x,y)=0.37-2.82\cdot(x-0.96)+1.77\cdot(y-0.26)

L(x,y)=2.622.82x+1.77yL(x,y)=2.62-2.82x+1.77y


Quadratic approximation:

Q(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)+Q(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)+

+12fxx(x0,y0)(xx0)2+fxy(x0,y0)(xx0)(yy0)++\frac{1}{2}f_{xx}(x_0,y_0)(x-x_0)^2+f_{xy}(x_0,y_0)(x-x_0)(y-y_0)+

+12fyy(x0,y0)(yy0)2+\frac{1}{2}f_{yy}(x_0,y_0)(y-y_0)^2


fxx(x,y)=π2sin(πx)tan(πy)+2yf_{xx}(x,y)=-\pi^2 sin(\pi x)tan(\pi y)+2y

fyy(x,y)=2π2sin(πx)sin(πy)cos3(πy)f_{yy}(x,y)=\frac{2\pi^2 sin(\pi x)sin(\pi y)}{cos^3(\pi y)}

fxy(x,y)=π2cos(πx)cos2(πy)+2xf_{xy}(x,y)=\frac{\pi^2 cos(\pi x)}{cos^2(\pi y)} +2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS