a) Find the linear and quadratic approximations of sin(0.96Ï€) tan(0.26Ï€) + (0.96)2(0.26)
b) Compare these approximations with the actual value.
"f(x,y)=sin(\\pi x)tan(\\pi y)+x^2y"
"x_0=0.96,\\ y_0=0.26"
a)
Linear approximation:
"L(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)"
"f_x(x,y)=\\pi cos(\\pi x)tan(\\pi y)+2xy"
"f_y(x,y)=\\frac{\\pi sin(\\pi x)}{cos^2(\\pi y)} +x^2"
"f(x_0,y_0)=sin(0.96\\pi )tan(0.26\\pi )+0.96^2\\cdot 0.26=0.37"
"f_x(x_0,y_0)=\\pi cos(0.96\\pi )tan(0.26\\pi )+2\\cdot 0.96\\cdot 0.26=-2.82"
"f_y(x_0,y_0)=\\frac{\\pi sin(0.96\\pi )}{cos^2(0.26\\pi )} +0.96^2=1.77"
"L(x,y)=0.37-2.82\\cdot(x-0.96)+1.77\\cdot(y-0.26)"
"L(x,y)=2.62-2.82x+1.77y"
Quadratic approximation:
"Q(x,y)=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)+"
"+\\frac{1}{2}f_{xx}(x_0,y_0)(x-x_0)^2+f_{xy}(x_0,y_0)(x-x_0)(y-y_0)+"
"+\\frac{1}{2}f_{yy}(x_0,y_0)(y-y_0)^2"
"f_{xx}(x,y)=-\\pi^2 sin(\\pi x)tan(\\pi y)+2y"
"f_{yy}(x,y)=\\frac{2\\pi^2 sin(\\pi x)sin(\\pi y)}{cos^3(\\pi y)}"
"f_{xy}(x,y)=\\frac{\\pi^2 cos(\\pi x)}{cos^2(\\pi y)} +2x"
Comments
Leave a comment