Plot the curve:
∮ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = ∫ L 2 ( 2 x y − x 2 ) d x + ( x + y 2 ) d y + ∫ L 1 ( 2 x y − x 2 ) d x + ( x + y 2 ) d y \oint {(2xy - {x^2})dx + (x + {y^2}} )dy = \int\limits_{{L_2}} {(2xy - {x^2})dx + (x + {y^2})dy + } \int\limits_{{L_1}} {(2xy - {x^2})dx + (x + {y^2})dy} ∮ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = L 2 ∫ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y + L 1 ∫ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y
L 1 : x = y 2 ⇒ d x = 2 y d y ⇒ ∫ L 1 ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = ∫ 1 0 ( 2 y 2 y − ( y 2 ) 2 ) 2 y d y + ( y 2 + y 2 ) d y = ∫ 1 0 ( 4 y 4 − 2 y 5 + 2 y 2 ) d y = 4 5 y 5 ∣ 1 0 − 1 3 y 6 ∣ 1 0 + 2 3 y 3 ∣ 1 0 = − 4 5 + 1 3 − 2 3 = − 17 15 {L_1}:x = {y^2} \Rightarrow dx = 2ydy \Rightarrow \int\limits_{{L_1}} {(2xy - {x^2})dx + (x + {y^2})dy} = \int\limits_1^0 {\left( {2{y^2}y - {{\left( {{y^2}} \right)}^2}} \right)} 2ydy + \left( {{y^2} + {y^2}} \right)dy = \int\limits_1^0 {\left( {4{y^4} - 2{y^5} + 2{y^2}} \right)} dy = \frac{4}{5}\left. {{y^5}} \right|_1^0 - \frac{1}{3}\left. {{y^6}} \right|_1^0 + \frac{2}{3}\left. {{y^3}} \right|_1^0 = - \frac{4}{5} + \frac{1}{3} - \frac{2}{3} = - \frac{{17}}{{15}} L 1 : x = y 2 ⇒ d x = 2 y d y ⇒ L 1 ∫ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = 1 ∫ 0 ( 2 y 2 y − ( y 2 ) 2 ) 2 y d y + ( y 2 + y 2 ) d y = 1 ∫ 0 ( 4 y 4 − 2 y 5 + 2 y 2 ) d y = 5 4 y 5 ∣ ∣ 1 0 − 3 1 y 6 ∣ ∣ 1 0 + 3 2 y 3 ∣ ∣ 1 0 = − 5 4 + 3 1 − 3 2 = − 15 17
L 2 : y = x 2 ⇒ d y = 2 x d x ⇒ ∫ L 2 ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = ∫ 0 1 ( 2 x 3 − x 2 ) d x + ( x + x 4 ) 2 x d x = ∫ 0 1 ( 2 x 3 − x 2 + 2 x 2 + 2 x 5 ) d x = 1 2 x 4 ∣ 0 1 + 1 3 x 3 ∣ 0 1 + 1 3 x 6 ∣ 0 1 = 1 2 + 1 3 + 1 3 = 7 6 {L_2}:y = {x^2} \Rightarrow dy = 2xdx \Rightarrow \int\limits_{{L_2}} {(2xy - {x^2})dx + (x + {y^2})dy} = \int\limits_0^1 {\left( {2{x^3} - {x^2}} \right)} dx + (x + {x^4})2xdx = \int\limits_0^1 {\left( {2{x^3} - {x^2} + 2{x^2} + 2{x^5}} \right)dx} = \frac{1}{2}\left. {{x^4}} \right|_0^1 + \frac{1}{3}\left. {{x^3}} \right|_0^1 + \frac{1}{3}\left. {{x^6}} \right|_0^1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{3} = \frac{7}{6} L 2 : y = x 2 ⇒ d y = 2 x d x ⇒ L 2 ∫ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = 0 ∫ 1 ( 2 x 3 − x 2 ) d x + ( x + x 4 ) 2 x d x = 0 ∫ 1 ( 2 x 3 − x 2 + 2 x 2 + 2 x 5 ) d x = 2 1 x 4 ∣ ∣ 0 1 + 3 1 x 3 ∣ ∣ 0 1 + 3 1 x 6 ∣ ∣ 0 1 = 2 1 + 3 1 + 3 1 = 6 7
Then
∮ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = 7 6 − 17 15 = 1 30 \oint {(2xy - {x^2})dx + (x + {y^2}} )dy = \frac{7}{6} - \frac{{17}}{{15}} = \frac{1}{{30}} ∮ ( 2 x y − x 2 ) d x + ( x + y 2 ) d y = 6 7 − 15 17 = 30 1
∂ P ∂ y = ∂ ∂ y ( 2 x y − x 2 ) = 2 x ; ∂ Q ∂ x = ∂ ∂ x ( x + y 2 ) = 1 \frac{{\partial P}}{{\partial y}} = \frac{\partial }{{\partial y}}\left( {2xy - {x^2}} \right) = 2x;\,\,\,\frac{{\partial Q}}{{\partial x}} = \frac{\partial }{{\partial x}}\left( {x + {y^2}} \right) = 1 ∂ y ∂ P = ∂ y ∂ ( 2 x y − x 2 ) = 2 x ; ∂ x ∂ Q = ∂ x ∂ ( x + y 2 ) = 1
Then
∫ ∫ D ( ∂ ∂ x − ∂ P ∂ y ) d x d y = ∫ 0 1 d x ∫ x 2 x ( 1 − 2 x ) d y = ∫ 0 1 ( 1 − 2 x ) y ∣ x 2 x d x = ∫ 0 1 ( 1 − 2 x ) ( x − x 2 ) d x = ∫ 0 1 ( x − 2 x 3 2 − x 2 + 2 x 3 ) d x = 2 3 x 3 2 ∣ 0 1 − 4 5 x 5 2 ∣ 0 1 − 1 3 x 3 ∣ 0 1 + 1 2 x 4 ∣ 0 1 = 2 3 − 4 5 − 1 3 + 1 2 = 1 30 \int {\int\limits_D {\left( {\frac{\partial }{{\partial x}} - \frac{{\partial P}}{{\partial y}}} \right)dxdy} } = \int\limits_0^1 {dx} \int\limits_{{x^2}}^{\sqrt x } {\left( {1 - 2x} \right)dy} = \int\limits_0^1 {\left( {1 - 2x} \right)\left. y \right|_{{x^2}}^{\sqrt x }dx} = \int\limits_0^1 {\left( {1 - 2x} \right)\left( {\sqrt x - {x^2}} \right)dx} = \int\limits_0^1 {\left( {\sqrt x - 2{x^{\frac{3}{2}}} - {x^2} + 2{x^3}} \right)} dx = \frac{2}{3}\left. {{x^{\frac{3}{2}}}} \right|_0^1 - \frac{4}{5}\left. {{x^{\frac{5}{2}}}} \right|_0^1 - \frac{1}{3}\left. {{x^3}} \right|_0^1 + \frac{1}{2}\left. {{x^4}} \right|_0^1 = \frac{2}{3} - \frac{4}{5} - \frac{1}{3} + \frac{1}{2} = \frac{1}{{30}} ∫ D ∫ ( ∂ x ∂ − ∂ y ∂ P ) d x d y = 0 ∫ 1 d x x 2 ∫ x ( 1 − 2 x ) d y = 0 ∫ 1 ( 1 − 2 x ) y ∣ x 2 x d x = 0 ∫ 1 ( 1 − 2 x ) ( x − x 2 ) d x = 0 ∫ 1 ( x − 2 x 2 3 − x 2 + 2 x 3 ) d x = 3 2 x 2 3 ∣ ∣ 0 1 − 5 4 x 2 5 ∣ ∣ 0 1 − 3 1 x 3 ∣ ∣ 0 1 + 2 1 x 4 ∣ ∣ 0 1 = 3 2 − 5 4 − 3 1 + 2 1 = 30 1
So, ∫ ∫ D ( ∂ ∂ x − ∂ P ∂ y ) d x d y = ∮ P d x + Q d y \int {\int\limits_D {\left( {\frac{\partial }{{\partial x}} - \frac{{\partial P}}{{\partial y}}} \right)dxdy} } = \oint {Pdx + Qdy} ∫ D ∫ ( ∂ x ∂ − ∂ y ∂ P ) d x d y = ∮ P d x + Q d y then Green's theorem is valid.
Comments