Plot the curve:
∮(2xy−x2)dx+(x+y2)dy=L2∫(2xy−x2)dx+(x+y2)dy+L1∫(2xy−x2)dx+(x+y2)dy
L1:x=y2⇒dx=2ydy⇒L1∫(2xy−x2)dx+(x+y2)dy=1∫0(2y2y−(y2)2)2ydy+(y2+y2)dy=1∫0(4y4−2y5+2y2)dy=54y5∣∣10−31y6∣∣10+32y3∣∣10=−54+31−32=−1517
L2:y=x2⇒dy=2xdx⇒L2∫(2xy−x2)dx+(x+y2)dy=0∫1(2x3−x2)dx+(x+x4)2xdx=0∫1(2x3−x2+2x2+2x5)dx=21x4∣∣01+31x3∣∣01+31x6∣∣01=21+31+31=67
Then
∮(2xy−x2)dx+(x+y2)dy=67−1517=301
∂y∂P=∂y∂(2xy−x2)=2x;∂x∂Q=∂x∂(x+y2)=1
Then
∫D∫(∂x∂−∂y∂P)dxdy=0∫1dxx2∫x(1−2x)dy=0∫1(1−2x)y∣x2xdx=0∫1(1−2x)(x−x2)dx=0∫1(x−2x23−x2+2x3)dx=32x23∣∣01−54x25∣∣01−31x3∣∣01+21x4∣∣01=32−54−31+21=301
So, ∫D∫(∂x∂−∂y∂P)dxdy=∮Pdx+Qdy then Green's theorem is valid.
Comments