Verify the green,s theorem in the plane for "\\oint" (2xy-x2)dx+(x+y2)dy where c is the closed curve of the region bounded by y=x2 and y2=x .
Plot the curve:
"\\oint {(2xy - {x^2})dx + (x + {y^2}} )dy = \\int\\limits_{{L_2}} {(2xy - {x^2})dx + (x + {y^2})dy + } \\int\\limits_{{L_1}} {(2xy - {x^2})dx + (x + {y^2})dy}"
"{L_1}:x = {y^2} \\Rightarrow dx = 2ydy \\Rightarrow \\int\\limits_{{L_1}} {(2xy - {x^2})dx + (x + {y^2})dy} = \\int\\limits_1^0 {\\left( {2{y^2}y - {{\\left( {{y^2}} \\right)}^2}} \\right)} 2ydy + \\left( {{y^2} + {y^2}} \\right)dy = \\int\\limits_1^0 {\\left( {4{y^4} - 2{y^5} + 2{y^2}} \\right)} dy = \\frac{4}{5}\\left. {{y^5}} \\right|_1^0 - \\frac{1}{3}\\left. {{y^6}} \\right|_1^0 + \\frac{2}{3}\\left. {{y^3}} \\right|_1^0 = - \\frac{4}{5} + \\frac{1}{3} - \\frac{2}{3} = - \\frac{{17}}{{15}}"
"{L_2}:y = {x^2} \\Rightarrow dy = 2xdx \\Rightarrow \\int\\limits_{{L_2}} {(2xy - {x^2})dx + (x + {y^2})dy} = \\int\\limits_0^1 {\\left( {2{x^3} - {x^2}} \\right)} dx + (x + {x^4})2xdx = \\int\\limits_0^1 {\\left( {2{x^3} - {x^2} + 2{x^2} + 2{x^5}} \\right)dx} = \\frac{1}{2}\\left. {{x^4}} \\right|_0^1 + \\frac{1}{3}\\left. {{x^3}} \\right|_0^1 + \\frac{1}{3}\\left. {{x^6}} \\right|_0^1 = \\frac{1}{2} + \\frac{1}{3} + \\frac{1}{3} = \\frac{7}{6}"
Then
"\\oint {(2xy - {x^2})dx + (x + {y^2}} )dy = \\frac{7}{6} - \\frac{{17}}{{15}} = \\frac{1}{{30}}"
"\\frac{{\\partial P}}{{\\partial y}} = \\frac{\\partial }{{\\partial y}}\\left( {2xy - {x^2}} \\right) = 2x;\\,\\,\\,\\frac{{\\partial Q}}{{\\partial x}} = \\frac{\\partial }{{\\partial x}}\\left( {x + {y^2}} \\right) = 1"
Then
"\\int {\\int\\limits_D {\\left( {\\frac{\\partial }{{\\partial x}} - \\frac{{\\partial P}}{{\\partial y}}} \\right)dxdy} } = \\int\\limits_0^1 {dx} \\int\\limits_{{x^2}}^{\\sqrt x } {\\left( {1 - 2x} \\right)dy} = \\int\\limits_0^1 {\\left( {1 - 2x} \\right)\\left. y \\right|_{{x^2}}^{\\sqrt x }dx} = \\int\\limits_0^1 {\\left( {1 - 2x} \\right)\\left( {\\sqrt x - {x^2}} \\right)dx} = \\int\\limits_0^1 {\\left( {\\sqrt x - 2{x^{\\frac{3}{2}}} - {x^2} + 2{x^3}} \\right)} dx = \\frac{2}{3}\\left. {{x^{\\frac{3}{2}}}} \\right|_0^1 - \\frac{4}{5}\\left. {{x^{\\frac{5}{2}}}} \\right|_0^1 - \\frac{1}{3}\\left. {{x^3}} \\right|_0^1 + \\frac{1}{2}\\left. {{x^4}} \\right|_0^1 = \\frac{2}{3} - \\frac{4}{5} - \\frac{1}{3} + \\frac{1}{2} = \\frac{1}{{30}}"
So, "\\int {\\int\\limits_D {\\left( {\\frac{\\partial }{{\\partial x}} - \\frac{{\\partial P}}{{\\partial y}}} \\right)dxdy} } = \\oint {Pdx + Qdy}" then Green's theorem is valid.
Comments
Leave a comment