Differentiate the following with respect to x.
b) f(x) = ln 2x . sin3 (x2 – 3)
Let us differentiate the function f(x)=ln2x⋅sin3(x2–3)f(x) = \ln 2x \cdot \sin 3 (x^2 – 3)f(x)=ln2x⋅sin3(x2–3) with respect to x using the product rule (h(x)g(x))′=h′(x)g(x)+h(x)g′(x)(h(x)g(x))'=h'(x)g(x)+h(x)g'(x)(h(x)g(x))′=h′(x)g(x)+h(x)g′(x) and the chain rule h(g(x))′=h′(g(x))⋅g′(x):h(g(x))'=h'(g(x))\cdot g'(x):h(g(x))′=h′(g(x))⋅g′(x):
f′(x)=12x⋅2⋅sin3(x2–3)+ln2x⋅cos3(x2–3)⋅3⋅2x=sin3(x2–3)x+6x⋅ln2x⋅cos3(x2–3).f'(x) = \frac{1}{2x}\cdot 2 \cdot \sin 3 (x^2 – 3)+\ln 2x \cdot \cos 3 (x^2 – 3)\cdot 3\cdot 2x\\ =\frac{ \sin 3 (x^2 – 3)}{x}+6x\cdot\ln 2x \cdot \cos 3 (x^2 – 3).f′(x)=2x1⋅2⋅sin3(x2–3)+ln2x⋅cos3(x2–3)⋅3⋅2x=xsin3(x2–3)+6x⋅ln2x⋅cos3(x2–3).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment