Answer to Question #234833 in Calculus for Jese Junior

Question #234833

Differentiate the following with respect to x.

b) f(x) = ln 2x . sin3 (x2 – 3)


1
Expert's answer
2021-09-12T17:58:03-0400

Let us differentiate the function f(x)=ln2xsin3(x23)f(x) = \ln 2x \cdot \sin 3 (x^2 – 3) with respect to x using the product rule (h(x)g(x))=h(x)g(x)+h(x)g(x)(h(x)g(x))'=h'(x)g(x)+h(x)g'(x) and the chain rule h(g(x))=h(g(x))g(x):h(g(x))'=h'(g(x))\cdot g'(x):

f(x)=12x2sin3(x23)+ln2xcos3(x23)32x=sin3(x23)x+6xln2xcos3(x23).f'(x) = \frac{1}{2x}\cdot 2 \cdot \sin 3 (x^2 – 3)+\ln 2x \cdot \cos 3 (x^2 – 3)\cdot 3\cdot 2x\\ =\frac{ \sin 3 (x^2 – 3)}{x}+6x\cdot\ln 2x \cdot \cos 3 (x^2 – 3).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment