Question #235024

Find the area of the region bounded by the curves

y=x^2-4x+4 and y=10-x^2

from x=10 and x=4


1
Expert's answer
2021-09-13T05:25:57-0400

Given curves are y=x24x+4;y=10x2y=x^2-4x+4 ; y=10-x^2

Graph of the above curves are:






So, area bounded by these curves from x=4x=4 to x=10x=10 will be given as:

410(x24x+4)dx+410(10x2)dx=410(x2)2dx+[10xx33]410=[(x2)33]410+1001000340+643=5123643+609363=4483+7563=12043=401.33 sq.units∫_4^{10} (x^2-4x+4) dx +|∫_4^{10} (10-x^2)dx| \\ =∫_4^{10} (x-2)^2 dx + |[10x-\frac{x^3}{3}]_4^{10}| \\ = [\frac{(x-2)^3}{3}]_4^{10} + |100-\frac{1000}{3}-40+\frac{64}{3}| \\ =\frac{512}{3}-\frac{64}{3}+|60-\frac{936}{3}|\\ =\frac{448}{3}+\frac{756}{3}\\ =\frac{1204}{3}\\ =401.33 \ sq. units

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS