Question #234343

Expand (2+x)^(-1/2) in ascending powers of x, up to the term x^3 . Hence approximate (2/3)^(1/2) correct to 3 significant figures


1
Expert's answer
2021-09-08T10:13:44-0400

The general formula is given by

(1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+...(1+x)^n=1+nx+{n(n-1)x^2\over 2!}+{n(n-1)(n-2)x^3\over 3!}+...

We are given

(2+x)12(2+x)^{-{1\over 2}}

Factor out 22 in (2+x)12(2+x)^{-{1\over 2}} to get

212(1+x2)122^{-{1\over 2}} (1+{x\over 2})^{-{1\over 2}}

Expand (1+x2)12(1+{x\over 2})^{-{1\over 2}} in ascending powers of xx , up to the term x3x^3

(1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+...(1+x)^n=1+nx+{n(n-1)x^2\over 2!}+{n(n-1)(n-2)x^3\over 3!}+...

    (1+x2)12=1+(12)(x2)+(12)((12)1)(x2)22!+(12)((12)1)((12)2)(x2)33!+...\implies (1+{x\over 2})^{-{1\over 2}}=1+(-{1\over 2})({x\over 2})+{(-{1\over 2})((-{1\over 2})-1)({x\over 2})^2\over 2!}+{(-{1\over 2})((-{1\over 2})-1)((-{1\over 2})-2)({x\over 2})^3\over 3!}+...

1+(12)(x2)+(12)((12)1)(x2)22!+(12)((12)1)((12)2)(x2)33!\approx 1+(-{1\over 2})({x\over 2})+{(-{1\over 2})((-{1\over 2})-1)({x\over 2})^2\over 2!}+{(-{1\over 2})((-{1\over 2})-1)((-{1\over 2})-2)({x\over 2})^3\over 3!}

=1x4+0.09375x20.0390625x3= 1-{x\over 4}+0.09375x^2-0.0390625x^3 up to the term x3x^3

    (2+x)12212(1x4+0.09375x20.0390625x3)\implies (2+x)^{-{1\over 2}} \approx 2^{-{1\over 2}}( 1-{x\over 4}+0.09375x^2-0.0390625x^3)

=0.707106781(1x4+0.09375x20.0390625x3)= 0.707106781( 1-{x\over 4}+0.09375x^2-0.0390625x^3)

=0.7071067810.176776695x+0.06629126x20.027621358x3= 0.707106781-0.176776695x+0.06629126x^2-0.027621358x^3

(23)12=(32)12=(1+12)12({2\over 3})^{1\over 2}=({3\over 2})^{-{1\over 2}}=(1+{1\over 2})^{-{1\over 2}}

Since (1+x2)121x4+0.09375x20.0390625x3(1+{x\over 2})^{-{1\over 2}} \approx 1-{x\over 4}+0.09375x^2-0.0390625x^3

Then (1+12)12114+0.09375(1)20.0390625(1)30.8046875(1+{1\over 2})^{-{1\over 2}} \approx 1-{1\over 4}+0.09375(1)^2-0.0390625(1)^3 \approx 0.8046875

(23)120.8046875\therefore ({2\over 3})^{1\over 2} \approx 0.8046875


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS