Expand (2+x)^(-1/2) in ascending powers of x, up to the term x^3 . Hence approximate (2/3)^(1/2) correct to 3 significant figures
The general formula is given by
"(1+x)^n=1+nx+{n(n-1)x^2\\over 2!}+{n(n-1)(n-2)x^3\\over 3!}+..."
We are given
"(2+x)^{-{1\\over 2}}"
Factor out "2" in "(2+x)^{-{1\\over 2}}" to get
"2^{-{1\\over 2}} (1+{x\\over 2})^{-{1\\over 2}}"
Expand "(1+{x\\over 2})^{-{1\\over 2}}" in ascending powers of "x" , up to the term "x^3"
"(1+x)^n=1+nx+{n(n-1)x^2\\over 2!}+{n(n-1)(n-2)x^3\\over 3!}+..."
"\\implies (1+{x\\over 2})^{-{1\\over 2}}=1+(-{1\\over 2})({x\\over 2})+{(-{1\\over 2})((-{1\\over 2})-1)({x\\over 2})^2\\over 2!}+{(-{1\\over 2})((-{1\\over 2})-1)((-{1\\over 2})-2)({x\\over 2})^3\\over 3!}+..."
"\\approx 1+(-{1\\over 2})({x\\over 2})+{(-{1\\over 2})((-{1\\over 2})-1)({x\\over 2})^2\\over 2!}+{(-{1\\over 2})((-{1\\over 2})-1)((-{1\\over 2})-2)({x\\over 2})^3\\over 3!}"
"= 1-{x\\over 4}+0.09375x^2-0.0390625x^3" up to the term "x^3"
"\\implies (2+x)^{-{1\\over 2}} \\approx 2^{-{1\\over 2}}( 1-{x\\over 4}+0.09375x^2-0.0390625x^3)"
"= 0.707106781( 1-{x\\over 4}+0.09375x^2-0.0390625x^3)"
"= 0.707106781-0.176776695x+0.06629126x^2-0.027621358x^3"
"({2\\over 3})^{1\\over 2}=({3\\over 2})^{-{1\\over 2}}=(1+{1\\over 2})^{-{1\\over 2}}"
Since "(1+{x\\over 2})^{-{1\\over 2}} \\approx 1-{x\\over 4}+0.09375x^2-0.0390625x^3"
Then "(1+{1\\over 2})^{-{1\\over 2}} \\approx 1-{1\\over 4}+0.09375(1)^2-0.0390625(1)^3 \\approx 0.8046875"
"\\therefore ({2\\over 3})^{1\\over 2} \\approx 0.8046875"
Comments
Leave a comment