The general formula is given by
(1+x)n=1+nx+2!n(n−1)x2+3!n(n−1)(n−2)x3+...
We are given
(2+x)−21
Factor out 2 in (2+x)−21 to get
2−21(1+2x)−21
Expand (1+2x)−21 in ascending powers of x , up to the term x3
(1+x)n=1+nx+2!n(n−1)x2+3!n(n−1)(n−2)x3+...
⟹(1+2x)−21=1+(−21)(2x)+2!(−21)((−21)−1)(2x)2+3!(−21)((−21)−1)((−21)−2)(2x)3+...
≈1+(−21)(2x)+2!(−21)((−21)−1)(2x)2+3!(−21)((−21)−1)((−21)−2)(2x)3
=1−4x+0.09375x2−0.0390625x3 up to the term x3
⟹(2+x)−21≈2−21(1−4x+0.09375x2−0.0390625x3)
=0.707106781(1−4x+0.09375x2−0.0390625x3)
=0.707106781−0.176776695x+0.06629126x2−0.027621358x3
(32)21=(23)−21=(1+21)−21
Since (1+2x)−21≈1−4x+0.09375x2−0.0390625x3
Then (1+21)−21≈1−41+0.09375(1)2−0.0390625(1)3≈0.8046875
∴(32)21≈0.8046875
Comments