(a) Find the linearization of f(x, y) = e^(x) cos y at the point (0, π/2)
Solution;
The linearization of a function f(x,y) at a point (x0,y0) is given by;
"L(x,y)=f(x_0,y_0)+( x-x_0)f_x(x_0,y_0)+(y-y_0)f_y(x_0,y_0)"
Given;
"f(x,y)=e^xcos y" and "(x_0,y_0)=(0,\\frac\u03c02)"
"f(0,\\frac\u03c02)=e^0cos(\\frac\u03c02)=0"
We can the derive;
"f_x=e^xcos y"
"f_y=-e^xsiny"
From which ;
"f_x(0,\\frac\u03c02)=e^0cos(\\frac\u03c02)=0"
"f_y(0,\\frac\u03c02)=-e^0sin(\\frac\u03c02)=-1"
Hence by substitution;
"L(x,y)=0+0(x-0)+(y-\\frac\u03c02)(-1)=\\frac\u03c02-y"
"L(x,y)=\\frac\u03c02-y"
Comments
Leave a comment