Question #223720
1. f(x,y)= x sin(1/x)+ y sin(1/y)
2. f(x,y,z)= 1/(√ (4-x^2-y^2-z^2)
1
Expert's answer
2021-08-23T04:49:19-0400

1 Given that f(x,y)=xsin(1x)+ysin(1y)f(x,y)= x sin(\frac{1}{x})+ y sin(\frac{1}{y})


f(x,y)x=sin(1x)+x(1x2)cos(1x)=sin(1x)1xcos(1x)\frac{\partial f(x,y)}{\partial x} = sin(\frac{1}{x}) + x(-\frac{1}{x^2})cos(\frac{1}{x}) = sin(\frac{1}{x}) -\frac{1}{x}cos(\frac{1}{x})


f(x,y)y=sin(1y)+y(1y2)cos(1y)=sin(1y)1ycos(1y)\frac{\partial f(x,y)}{\partial y} = sin(\frac{1}{y}) + y(-\frac{1}{y^2})cos(\frac{1}{y}) = sin(\frac{1}{y}) -\frac{1}{y}cos(\frac{1}{y})



2 Given that f(x,y,z)=14x2y2z2f(x,y,z)= \frac{1}{\sqrt{4-x^2-y^2-z^2}}


f(x,y,z)x=2x2(4x2y2z2)3/2=x(4x2y2z2)3/2\frac{\partial f(x,y,z)}{\partial x} = -\frac{-2x}{2({4-x^2-y^2-z^2})^{3/2}} = \frac{x}{({4-x^2-y^2-z^2})^{3/2}}


f(x,y,z)y=2y2(4x2y2z2)3/2=y(4x2y2z2)3/2\frac{\partial f(x,y,z)}{\partial y} = -\frac{-2y}{2({4-x^2-y^2-z^2})^{3/2}} = \frac{y}{({4-x^2-y^2-z^2})^{3/2}}


f(x,y,z)z=2z2(4x2y2z2)3/2=z(4x2y2z2)3/2\frac{\partial f(x,y,z)}{\partial z} = -\frac{-2z}{2({4-x^2-y^2-z^2})^{3/2}} = \frac{z}{({4-x^2-y^2-z^2})^{3/2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS