1 Given that f(x,y)=xsin(x1)+ysin(y1)
∂x∂f(x,y)=sin(x1)+x(−x21)cos(x1)=sin(x1)−x1cos(x1)
∂y∂f(x,y)=sin(y1)+y(−y21)cos(y1)=sin(y1)−y1cos(y1)
2 Given that f(x,y,z)=4−x2−y2−z21
∂x∂f(x,y,z)=−2(4−x2−y2−z2)3/2−2x=(4−x2−y2−z2)3/2x
∂y∂f(x,y,z)=−2(4−x2−y2−z2)3/2−2y=(4−x2−y2−z2)3/2y
∂z∂f(x,y,z)=−2(4−x2−y2−z2)3/2−2z=(4−x2−y2−z2)3/2z
Comments