1 Given that "f(x,y)= x sin(\\frac{1}{x})+ y sin(\\frac{1}{y})"
"\\frac{\\partial f(x,y)}{\\partial x} = sin(\\frac{1}{x}) + x(-\\frac{1}{x^2})cos(\\frac{1}{x}) = \nsin(\\frac{1}{x}) -\\frac{1}{x}cos(\\frac{1}{x})"
"\\frac{\\partial f(x,y)}{\\partial y} = sin(\\frac{1}{y}) + y(-\\frac{1}{y^2})cos(\\frac{1}{y}) = \nsin(\\frac{1}{y}) -\\frac{1}{y}cos(\\frac{1}{y})"
2 Given that "f(x,y,z)= \\frac{1}{\\sqrt{4-x^2-y^2-z^2}}"
"\\frac{\\partial f(x,y,z)}{\\partial x} = -\\frac{-2x}{2({4-x^2-y^2-z^2})^{3\/2}} = \\frac{x}{({4-x^2-y^2-z^2})^{3\/2}}"
"\\frac{\\partial f(x,y,z)}{\\partial y} = -\\frac{-2y}{2({4-x^2-y^2-z^2})^{3\/2}} = \\frac{y}{({4-x^2-y^2-z^2})^{3\/2}}"
"\\frac{\\partial f(x,y,z)}{\\partial z} = -\\frac{-2z}{2({4-x^2-y^2-z^2})^{3\/2}} = \\frac{z}{({4-x^2-y^2-z^2})^{3\/2}}"
Comments
Leave a comment